Synthesis of CFB-Coal Fly Ash Clay Bricks and Their Characterisation

2010 ◽  
Vol 2 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Nikolaos Koukouzas ◽  
Chrisovalantis Ketikidis ◽  
Grigorios Itskos ◽  
Xenophon Spiliotis ◽  
Vayos Karayannis ◽  
...  
Keyword(s):  
Fly Ash ◽  
2017 ◽  
Vol 7 ◽  
pp. 152-159 ◽  
Author(s):  
Nidhi Gupta ◽  
Vidyadhar V. Gedam ◽  
Chandrashekhar Moghe ◽  
Pawan Labhasetwar

2018 ◽  
Vol 44 (4) ◽  
pp. 4400-4412 ◽  
Author(s):  
D. Eliche-Quesada ◽  
J.A. Sandalio-Pérez ◽  
S. Martínez-Martínez ◽  
L. Pérez-Villarejo ◽  
P.J. Sánchez-Soto

Author(s):  
Alberto Jr Longos ◽  
April Anne Tigue ◽  
Ithan Jessemar Dollente ◽  
Roy Alvin Malenab ◽  
Ivyleen Bernardo-Arugay ◽  
...  

Geopolymer cement has been popularly studied nowadays compared to ordinary Portland cement but has demonstrated superior environmental advantages due to its lower carbon emissions and waste material utilization. Several studies on geopolymers have utilized various wastes like fly ash, blast furnace slag, silica fume, rice husk, or a combination of these wastes. This paper presents a mix formulation design experiment to produce a geopolymer from nickel-laterite mine waste (NMW) and coal fly ash (CFA) as a geopolymer precursor, and sodium hydroxide (SH) and sodium silicate (SS) as alkali activators. An I-optimal design experiment is used to predict the compressive strength for all the mixture's possible formulations and identify optimal proportions to minimize the average variance of prediction. A mixed formulation run of 50% NMW, SH-to-SS ratio of 0.5, and an activator-to-precursor ratio of 0.4286 yielded the highest 28-day unconfined compressive strength (UCS) of 22.1±5.4 MPa. Furthermore, using an optimized formulation of 50.12% NMW, SH-to-SS ratio of 0.516, and an activator-to-precursor ratio of 0.428, an actual UCS value of 36.26±3.6 MPa was obtained. The result implies that the synthesized geopolymer material can be potentially used for pedestrian pavers, light traffic pavers, plain concrete for leveling, building bricks, ceramic glazed facing brick, and fired clay bricks.


2008 ◽  
Vol 7 (3) ◽  
pp. 289-293 ◽  
Author(s):  
Maria Harja ◽  
Marinela Barbuta ◽  
Lacramioara Rusu ◽  
Nicolae Apostolescu
Keyword(s):  
Fly Ash ◽  

Agriculture ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 47
Author(s):  
Kai Yang ◽  
Zejun Tang ◽  
Jianzhang Feng

Sandy soils are prone to nutrient losses, and consequently do not have as much as agricultural productivity as other soils. In this study, coal fly ash (CFA) and anionic polyacrylamide (PAM) granules were used as a sandy soil amendment. The two additives were incorporated to the sandy soil layer (depth of 0.2 m, slope gradient of 10°) at three CFA dosages and two PAM dosages. Urea was applied uniformly onto the low-nitrogen (N) soil surface prior to the simulated rainfall experiment (rainfall intensity of 1.5 mm/min). The results showed that compared with no addition of CFA and PAM, the addition of CFA and/or PAM caused some increases in the cumulative NO3−-N and NH4+-N losses with surface runoff; when the rainfall event ended, 15% CFA alone treatment and 0.01–0.02% PAM alone treatment resulted in small but significant increases in the cumulative runoff-associated NO3−-N concentration (p < 0.05), meanwhile 10% CFA + 0.01% PAM treatment and 15% CFA alone treatment resulted in nonsignificant small increases in the cumulative runoff-associated NH4+-N concentration (p > 0.05). After the rainfall event, both CFA and PAM alone treatments increased the concentrations of NO3−-N and NH4+-N retained in the sandy soil layer compared with the unamended soil. As the CFA and PAM co-application rates increased, the additive effect of CFA and PAM on improving the nutrient retention of sandy soil increased.


Sign in / Sign up

Export Citation Format

Share Document