Recycling of Glass Cullet and Glass Powder in Alkali-Activated Cement: Mechanical Properties and Alkali–Silica Reaction

2020 ◽  
Vol 11 (12) ◽  
pp. 7159-7169
Author(s):  
Pingping He ◽  
Binyu Zhang ◽  
Shuqing Yang ◽  
Hafiz Asad Ali ◽  
Jian-Xin Lu ◽  
...  
Author(s):  
Hyuk Lee ◽  
Vanissorn Vimonsatit

This paper presents the mechanical properties of fly ash-based alkali-activated cement (AAC). A statistical analysis method was used to determine the effect of mix proportion parameters on the dry density and compressive strength of fly ash-based AAC pastes and mortars. For that purpose, sample mixtures were designed according to Taguchi’s experimental design method, i.e., in a L9 orthogonal array. Four factors were selected: “silica fume content” (SF), “sand to solid ratio” (s/c), “liquid to solid ratio” (l/s), and “superplasticiser content” (SP). The experimental results were analysed by using signal to noise for quality control of each mixture, and analysis of variance (ANOVA) was used to determine the significant effect on the compressive strength of fly ash-based AAC. Furthermore, a regression-analysis method was used to predict the compressive strength according to the variation of the four factors. Results indicated that silica fume is the most influencing parameter on compressive strength, which could be decreased by superplasticiser and l/s ratio. There is no significant effect of sand-to-cementitious ratio on compressive strength of fly ash-based AAC. The dry density decreases as the sand-to-cementitious ratio is decreased. The increasing l/s ratio and superplasticiser dosage could further decrease the dry density of fly ash-based AAC.


2019 ◽  
Vol 69 (336) ◽  
pp. 199 ◽  
Author(s):  
B. J. Frasson ◽  
R. C.A. Pinto ◽  
J. C. Rocha

Coal mining wastes are associated with serious environmental problems; they have potential as building materials, including alkali-activated cement. In this study, the effect of different coal mining wastes on the mechanical properties and microstructural development of alkali-activated materials (AAMs) was evaluated through XRD, SEM and FTIR spectroscopy. Different alkali-activated compounds were produced; the alkaline solution was composed of NaOH+Na2SiO3. The results obtained using the calcined coal sludge showed excellent mechanical performance, with compressive strength higher than 60 MPa. However, addition of metakaolin and ordinary Portland cement was necessary to increase the mechanical performance of calcined coal gangue materials. The formation of N-A-S-H gel and the incorporation of iron ions into the cementitious matrix were evidenced. Ultrasonic pulse velocity indicated the early polymerization during the reaction processes. The study verified that the different characteristics of the wastes influence the performance of alkali-activated materials.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2301
Author(s):  
Taewan Kim ◽  
Choonghyun Kang

This is an experiment on the effect of mixing time for alkali-activated cement (AAC) using a binder mixed with ground granulated blast furnace slag (slag) and fly ash (FA) in a ratio of 1:1 on the mechanical properties. The mixing method of ASTM C305 was used as the basic mixing method, and the following mixing method was changed. Simply adding the same mixing time and procedure, the difference in the order of mixing slag and FA, and controlling the amount of activator and mixed water were considered. As a result of the experiment, the addition of the same mixing time and procedure, pre-injection of slag, and high-alkali mixed water in which half of the activator and mixing water were mixed showed the highest mechanical properties and a dense pore structure. As a result, the design of a blending method that can promote the activation action of slag rather than FA at room temperature was effective in improving the mechanical properties of AAC. In addition, these blending factors showed a clearer effect as the concentration of the activator increased. Through the results of this experiment, it was shown that high-temperature curing, high fineness of the binder, or even changing the setting of the mixing method without the use of excessive activators can lead to an improvement of mechanical properties.


2020 ◽  
Author(s):  
Zine El Abidine Rahmouni ◽  
Nadia Tebbal ◽  
Imen Yamina Omri

In this study, compressive strength values were measured at different curing times(7,14 and 28 days).The alkali-activation of the brick and glass powder body with potassium water glass having a silicate modulus of 3. Compressive strengths, flexural strength and specific fracture energy of the specimens stored at 40° C and 60° C are evaluated at 28-days. The study demonstrates that the storage temperature of specimens and the content of the alkaline solution have a significant influence on all mechanical properties of the studied materials. Keywords: brick waste, glass powder, curing temperature, alkali-activated.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2144 ◽  
Author(s):  
Jessica Giro-Paloma ◽  
Camila Barreneche ◽  
Alex Maldonado-Alameda ◽  
Miquel Royo ◽  
Joan Formosa ◽  
...  

Within the thermal energy storage field, one of the main challenges of this study is the development of new enhanced heat storage materials to be used in the building sector. The purpose of this study is the development of alkali-activated cements (AACs) with mechanical properties to store high amounts of heat. These AACs incorporate wastes from industrial glass process as well as microencapsulated phase change materials (mPCMs) to improve the thermal inertia of building walls, and accordingly respective energy savings. The research presented below consists of the exhaustive characterization of different AACs formulated from some waste generated during the proper management of municipal waste used as precursor. In this case study, AACs were formulated with the waste generated during the recycling of glass cullet, namely ceramic, stone, and porcelain (CSP), which is embedding a mPCM. The addition of mPCM was used as thermal energy storage (TES) material. The mechanical properties were also evaluated in order to test the feasibility of the use of the new formulated materials as a passive TES system. The results showed that the AAC obtained from CSP (precursors) mixed with mPCMs to obtain a thermal regulator material to be implemented in building walls was reached successfully. The material developed was resistant enough to perform as insulating panels. The formulated materials had high storage capacity depending on the PCM content. The durability of the mPCM shell was studied in contact with alkaline medium (NaOH 4 M) and no degradation was confirmed. Moreover, the higher the content of mPCM, the lower the mechanical properties expected, due to the porosity increments with mPCM incorporation in the formulations.


2020 ◽  
Vol 330 ◽  
pp. 01050
Author(s):  
Zineb Douaissia ◽  
Mouloud Merzoud ◽  
Amar Benazzouk

In order to value glass in the production of cement and concrete. We have verified the effect of the progressive substitution of 10% to 50% of the volume of cement by glass powder and silica fume on the mechanical properties of hardened mortars, we have also verified their inhibitory effect of the Alkali Silica Reaction (ASR) by studying the variation of mass, expansion, opening and density of cracks as well as the loss of mechanical performance of mortars undergoes a test that accelerates the ASR by autoclave. We have concluded that the use of these mineral admixtures can improve the mechanical performance of mortars, and it can reduce expansions and mechanical performance losses due to ASR.


Sign in / Sign up

Export Citation Format

Share Document