scholarly journals Vortex interaction on a LEX configuration

Author(s):  
Moo-Ting Chou ◽  
Jiun-Jih Miau ◽  
Li-Yu Chen

AbstractFlow visualization experiments were conducted in a water channel and a low-speed wind tunnel at Reynolds number of 1.54 $$\times$$ × 104 to 1.2 $$\times$$ × 105 for a leading-edge extension model, which is referred to as a NASA TP-1803 model in this study. In addition, particle image velocimetry velocity measurements were taken in the water channel to obtain the quantitative information about the three-dimensional velocity field over the strake and wing surfaces. The results obtained at low, medium and high angles of attacks represent three distinct cases of interaction between the strake and wing vortices. Namely, at α = 5o and 10° the strake and wing vortices were developed over the wing surface without significant interaction noticed; at α = 20°, the strake vortex strongly interacted with the wing vortex in an intertwining manner, which was sensitive to Reynolds number; at α = 30°, the breakdown of the strake vortex took place close to the junction of the strake and the wing; thus, the interaction of the strake and the wing vortices appeared to be less significant than the case of α = 20°. Graphic abstract

Author(s):  
Arash Naghib Lahouti ◽  
Lakshmana Sampat Doddipatla ◽  
Horia Hangan ◽  
Kamran Siddiqui

The wake of nominally two dimensional bluff bodies is dominated by von Ka´rma´n vortices, which are accompanied by three dimensional instabilities beyond a threshold Reynolds number. These three dimensional instabilities initiate as dislocations in the von Ka´rma´n vortices near the trailing edge, which evolve into pairs of counter-rotating vortices further downstream. The wavelength of the three dimensional instabilities depends on profile geometry and Reynolds number. In the present study, the three dimensional wake instabilities for a blunt trailing edge profiled body, composed of an elliptical leading edge and a rectangular trailing edge, have been studied in Reynolds numbers ranging from 500 to 1200, based on the thickness of the body. Numerical simulations, Laser Induced Fluorescence (LIF) flow visualization, and Particle Image Velocimetry (PIV) methods have been used to identify the instabilities. Proper Orthogonal Decomposition (POD) has been used to analyze the velocity field data measured using PIV. The results confirm the existence of three dimensional instabilities with an average wavelength of 2.0 to 2.5 times thickness of the body, in the near wake. The findings are in agreements with the values reported previously for different Reynolds numbers, and extend the range of Reynolds numbers in which the three dimensional instabilities are characterized.


2016 ◽  
Vol 792 ◽  
pp. 682-711 ◽  
Author(s):  
Michael O. John ◽  
Dominik Obrist ◽  
Leonhard Kleiser

The leading-edge boundary layer (LEBL) in the front part of swept airplane wings is prone to three-dimensional subcritical instability, which may lead to bypass transition. The resulting increase of airplane drag and fuel consumption implies a negative environmental impact. In the present paper, we present a temporal biglobal secondary stability analysis (SSA) and direct numerical simulations (DNS) of this flow to investigate a subcritical transition mechanism. The LEBL is modelled by the swept Hiemenz boundary layer (SHBL), with and without wall suction. We introduce a pair of steady, counter-rotating, streamwise vortices next to the attachment line as a generic primary disturbance. This generates a high-speed streak, which evolves slowly in the streamwise direction. The SSA predicts that this flow is unstable to secondary, time-dependent perturbations. We report the upper branch of the secondary neutral curve and describe numerous eigenmodes located inside the shear layers surrounding the primary high-speed streak and the vortices. We find secondary flow instability at Reynolds numbers as low as$Re\approx 175$, i.e. far below the linear critical Reynolds number$Re_{crit}\approx 583$of the SHBL. This secondary modal instability is confirmed by our three-dimensional DNS. Furthermore, these simulations show that the modes may grow until nonlinear processes lead to breakdown to turbulent flow for Reynolds numbers above$Re_{tr}\approx 250$. The three-dimensional mode shapes, growth rates, and the frequency dependence of the secondary eigenmodes found by SSA and the DNS results are in close agreement with each other. The transition Reynolds number$Re_{tr}\approx 250$at zero suction and its increase with wall suction closely coincide with experimental and numerical results from the literature. We conclude that the secondary instability and the transition scenario presented in this paper may serve as a possible explanation for the well-known subcritical transition observed in the leading-edge boundary layer.


1991 ◽  
Vol 113 (4) ◽  
pp. 367-373 ◽  
Author(s):  
S. V. Garimella ◽  
P. A. Eibeck

Flow visualization and measurements of velocity and turbulence intensity using laser Doppler velocimetry are used to investigate separation and reattachment processes in the flow over an array of protruding elements mounted on the bottom wall of a rectangular water channel. The concept of an array shear layer is introduced to demarcate the region of influence over which the resistance of the array retards the flow. Flow separation at the leading edge of the elements is documented. The confined or interacting nature of the flow in the cavities between elements is established as a function of element spacing. The reattachment length downstream of the element varies from 4 to 1.5 element heights, decreasing both with an increase in Reynolds number and a decrease in channel height.


2018 ◽  
Vol 5 (7) ◽  
pp. 172197 ◽  
Author(s):  
Shantanu S. Bhat ◽  
Jisheng Zhao ◽  
John Sheridan ◽  
Kerry Hourigan ◽  
Mark C. Thompson

Stable attachment of a leading-edge vortex (LEV) plays a key role in generating the high lift on rotating wings with a central body. The central body size can affect the LEV structure broadly in two ways. First, an overall change in the size changes the Reynolds number, which is known to have an influence on the LEV structure. Second, it may affect the Coriolis acceleration acting across the wing, depending on the wing-offset from the axis of rotation. To investigate this, the effects of Reynolds number and the wing-offset are independently studied for a rotating wing. The three-dimensional LEV structure is mapped using a scanning particle image velocimetry technique. The rapid acquisition of images and their correlation are carefully validated. The results presented in this paper show that the LEV structure changes mainly with the Reynolds number. The LEV-split is found to be only minimally affected by changing the central body radius in the range of small offsets, which interestingly includes the range for most insects. However, beyond this small offset range, the LEV-split is found to change dramatically.


1991 ◽  
Vol 113 (3) ◽  
pp. 405-410 ◽  
Author(s):  
Kyuro Sasaki ◽  
Masaru Kiya

This paper describes the results of a flow visualization study which concerns three-dimensional vortex structures in a leading-edge separation bubble formed along the sides of a blunt flat plate. Dye and hydrogen bubbles were used as tracers. Reynolds number (Re), based on the plate thickness, was varied from 80 to 800. For 80 < Re < 320, the separated shear layer remains laminar up to the reattachment line without significant spanwise distortion of vortex filaments. For 320 < Re < 380, a Λ-shaped deformation of vortex filaments appears shortly downstream of the reattachment and is arranged in-phase in the downstream direction. For Re > 380, hairpin-like structures are formed and arranged in a staggered manner. The longitudinal and spanwise distances of the vortex arrangement are presented as functions of the Reynolds number.


2015 ◽  
Vol 1104 ◽  
pp. 45-50 ◽  
Author(s):  
Zuzana Broučková ◽  
Shu Shen Hsu ◽  
An Bang Wang ◽  
Zdeněk Trávníček

A synthetic jet (SJ) is a fluid jet flow generated from fluid oscillations during a periodical fluid exchange between an actuator cavity and surrounding fluid. A water synthetic jet was generated from submerged piezoelectric-driven SJ actuator. The actuator slot width was 0.36 mm. The experiments were performed using laser induced fluorescence (LIF) flow visualization and particle image velocimetry (PIV) techniques, both in a phase locked setup. The LIF visualization was used to demonstrate three-dimensional nature of the SJ formation process and to estimate SJ velocity. The PIV experiment quantified SJ velocity cycles in chosen plans. The driven frequency was adjusted near the resonance at approximately 46 Hz. It was evaluated theoretically and confirmed experimentally by means of LIF visualization. The time-mean orifice velocity and the Reynolds number were estimated asU0= 0.07–0.10 m/s andRe= 100–150, respectively.


Author(s):  
M Yaghoubi ◽  
E Velayati

Numerical studies of fluid flow and heat transfer are made in the separated, reattached, and redeveloped regions of the three-dimensional air flow on an array of finite plates with blunt leading edge. The flow reattachment occurs at a place downstream from the leading edge and the heat transfer coefficient becomes maximum around this region. The heat transfer coefficient is found to increase sharply near the leading edge and reduces in the wake. For the range of the parameters investigated in this study, some correlations have been developed for the length of reattachment region and variation of overall heat transfer coefficient for the considered bluff obstacles with various geometry and flow Reynolds number. For such blunt plates, when they are acting like fins, fin efficiency is determined and a relation based on flow Reynolds number and geometric parameters is developed to predict variation of the overall fin efficiency.


2009 ◽  
Vol 630 ◽  
pp. 129-153 ◽  
Author(s):  
R. HAIN ◽  
C. J. KÄHLER ◽  
R. RADESPIEL

The laminar separation bubble on an SD7003 aerofoil at a Reynolds numberRe= 66000 was investigated to determine the dominant frequencies of the transition process and the flapping of the bubble. The measurements were performed with a high-resolution time-resolved particle image velocimetry (TR-PIV) system. Contrary to typical measurements performed through conventional PIV, the different modes can be identified by applying TR-PIV. The interaction between the shed vortices is analysed, and their significance for the production of turbulence is presented. In the shear layer above the bubble the generation and amplification of vortices due to Kelvin–Helmholtz instabilities is observed. It is found that these instabilities have a weak coherence in the spanwise direction. In a later stage of transition these vortices lead to a three-dimensional breakdown to turbulence.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
K. Anand ◽  
S. Sarkar

The evolution of a separated boundary layer over a model airfoil with semicircular leading-edge has been illustrated for angles of attack (α) varying from −3 deg to 10 deg, where the Reynolds number (Rec) based on chord is 1.6 × 105 and the inlet freestream turbulence (fst) being 1.2%. The features of boundary layer are described through measurements of velocity and surface pressure besides the flow visualization using a planar particle image velocimetry (PIV). Freestream perturbations are amplified because of enhanced receptivity of the separated boundary layer resulting in pockets of disturbances, which then propagate downstream attributing to random fluctuations near the reattachment. The separation and reattachment locations including the onset and end of transition are identified for changing α. The reattachment point changes from 18.8% to 47.7% of chord with the onset of separation at almost 7%, whereas the onset of transition moves upstream from 13.2% to 9% with increasing α. The bubble bursting occurs at α = 10 deg. The transition in the separated boundary layer occurs through Kelvin–Helmholtz (K–H) instability for α = 0 deg and 3 deg, whereas the K–H mechanism is bypassed for higher α with significant viscous effect.


2011 ◽  
Vol 669 ◽  
pp. 375-396 ◽  
Author(s):  
CHRISTOPH J. MACK ◽  
PETER J. SCHMID

The global temporal stability of three-dimensional compressible flow about a yawed parabolic body of infinite span is investigated using an iterative eigenvalue technique in combination with direct numerical simulations. The computed global spectrum provides a comprehensive picture of the temporal perturbation dynamics of the flow, and a wide and rich variety of modes has been uncovered for the investigated parameter choices: stable and unstable boundary-layer modes, different types of stable and unstable acoustic modes, and stable wavepacket modes have been found. A parameter study varying the spanwise perturbation wavenumber and the sweep Reynolds number reproduced a preferred spanwise length scale and a critical Reynolds number for a boundary-layer or acoustic instability. Convex leading-edge curvature has been found to have a strongly stabilizing effect on boundary-layer modes but only a weakly stabilizing effect on acoustic modes. Furthermore, for certain parameter choices, the acoustic modes have been found to dominate the boundary-layer modes.


Sign in / Sign up

Export Citation Format

Share Document