Improved slime mould algorithm by opposition-based learning and Levy flight distribution for global optimization and advances in real-world engineering problems

Author(s):  
Laith Abualigah ◽  
Ali Diabat ◽  
Mohamed Abd Elaziz
2021 ◽  
Vol 12 (1) ◽  
pp. 49-66
Author(s):  
Yu Li ◽  
Yiran Zhao ◽  
Jingsen Liu

The sine cosine algorithm (SCA) is a recently proposed global swarm intelligence algorithm based on mathematical functions. This paper proposes a Levy flight sine cosine algorithm (LSCA) to solve optimization problems. In the update equation, the levy flight is introduced to improve optimization ability of SCA. By generating a random walk to update the position, this strategy can effectively search for particles to maintain better population diversity. LSCA has been tested 15 benchmark functions and real-world engineering design optimization problems. The result of simulation experiments with LSCA, SCA, PSO, FPA, and other improvement SCA show that the LSCA has stronger robustness and better convergence accuracy. The engineering problems are also shown that the effectiveness of the levy flight sine cosine algorithm to ensure the efficient results in real-world optimization problem.


2021 ◽  
pp. 1-12
Author(s):  
Heming Jia ◽  
Chunbo Lang

Salp swarm algorithm (SSA) is a meta-heuristic algorithm proposed in recent years, which shows certain advantages in solving some optimization tasks. However, with the increasing difficulty of solving the problem (e.g. multi-modal, high-dimensional), the convergence accuracy and stability of SSA algorithm decrease. In order to overcome the drawbacks, salp swarm algorithm with crossover scheme and Lévy flight (SSACL) is proposed. The crossover scheme and Lévy flight strategy are used to improve the movement patterns of salp leader and followers, respectively. Experiments have been conducted on various test functions, including unimodal, multimodal, and composite functions. The experimental results indicate that the proposed SSACL algorithm outperforms other advanced algorithms in terms of precision, stability, and efficiency. Furthermore, the Wilcoxon’s rank sum test illustrates the advantages of proposed method in a statistical and meaningful way.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Danni Chen ◽  
JianDong Zhao ◽  
Peng Huang ◽  
Xiongna Deng ◽  
Tingting Lu

Purpose Sparrow search algorithm (SSA) is a novel global optimization method, but it is easy to fall into local optimization, which leads to its poor search accuracy and stability. The purpose of this study is to propose an improved SSA algorithm, called levy flight and opposition-based learning (LOSSA), based on LOSSA strategy. The LOSSA shows better search accuracy, faster convergence speed and stronger stability. Design/methodology/approach To further enhance the optimization performance of the algorithm, The Levy flight operation is introduced into the producers search process of the original SSA to enhance the ability of the algorithm to jump out of the local optimum. The opposition-based learning strategy generates better solutions for SSA, which is beneficial to accelerate the convergence speed of the algorithm. On the one hand, the performance of the LOSSA is evaluated by a set of numerical experiments based on classical benchmark functions. On the other hand, the hyper-parameter optimization problem of the Support Vector Machine (SVM) is also used to test the ability of LOSSA to solve practical problems. Findings First of all, the effectiveness of the two improved methods is verified by Wilcoxon signed rank test. Second, the statistical results of the numerical experiment show the significant improvement of the LOSSA compared with the original algorithm and other natural heuristic algorithms. Finally, the feasibility and effectiveness of the LOSSA in solving the hyper-parameter optimization problem of machine learning algorithms are demonstrated. Originality/value An improved SSA based on LOSSA is proposed in this paper. The experimental results show that the overall performance of the LOSSA is satisfactory. Compared with the SSA and other natural heuristic algorithms, the LOSSA shows better search accuracy, faster convergence speed and stronger stability. Moreover, the LOSSA also showed great optimization performance in the hyper-parameter optimization of the SVM model.


Author(s):  
Davut Izci ◽  
Serdar Ekinci ◽  
Baran Hekimoğlu

In this paper, an optimal proportional, integral, derivative and acceleration (PIDA) controller design based on Bode’s ideal reference model and a novel modified Lévy flight distribution (mLFD) algorithm is proposed for buck converter system. The modification of the original Lévy flight distribution (LFD) algorithm was achieved by improving exploration and exploitation capabilities of the algorithm through incorporation of opposition-based learning mechanism and hybridizing with simulated annealing algorithm, respectively. The modified algorithm was used to tune the gains of the PIDA controller in order to operate a buck converter system that is mimicking the response of the Bode’s ideal reference model. Both the proposed novel algorithm and its PIDA controller design implementation for buck converter were confirmed through various tests and extensive analyses of statistical and non-parametric tests, convergence profile, transient and frequency responses, disturbance rejection, robustness, and time delay response. The comparative results with the state-of-the-art algorithms of manta ray foraging optimization, arithmetic optimization algorithm and the original LFD algorithm have shown that the proposed mLFD algorithm performs better than the compared ones in all assessments even when different well-known performance indices are used. The proposed Bode’s ideal reference model-based optimal PIDA control design with novel mLFD algorithm was also compared with other design approaches using the same buck converter system available in the literature. The proposed mLFD algorithm-based design approach has also shown greater effectiveness compared to other available methods, as well.


2020 ◽  
Vol 538 ◽  
pp. 122687
Author(s):  
Ruxin Zhao ◽  
Yongli Wang ◽  
Chang Liu ◽  
Peng Hu ◽  
Yanchao Li ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Xian Shan ◽  
Kang Liu ◽  
Pei-Liang Sun

Bat Algorithm (BA) is a swarm intelligence algorithm which has been intensively applied to solve academic and real life optimization problems. However, due to the lack of good balance between exploration and exploitation, BA sometimes fails at finding global optimum and is easily trapped into local optima. In order to overcome the premature problem and improve the local searching ability of Bat Algorithm for optimization problems, we propose an improved BA called OBMLBA. In the proposed algorithm, a modified search equation with more useful information from the search experiences is introduced to generate a candidate solution, and Lévy Flight random walk is incorporated with BA in order to avoid being trapped into local optima. Furthermore, the concept of opposition based learning (OBL) is embedded to BA to enhance the diversity and convergence capability. To evaluate the performance of the proposed approach, 16 benchmark functions have been employed. The results obtained by the experiments demonstrate the effectiveness and efficiency of OBMLBA for global optimization problems. Comparisons with some other BA variants and other state-of-the-art algorithms have shown the proposed approach significantly improves the performance of BA. Performances of the proposed algorithm on large scale optimization problems and real world optimization problems are not discussed in the paper, and it will be studied in the future work.


2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Shuang Wang ◽  
Qingxin Liu ◽  
Yuxiang Liu ◽  
Heming Jia ◽  
Laith Abualigah ◽  
...  

Based on Salp Swarm Algorithm (SSA) and Slime Mould Algorithm (SMA), a novel hybrid optimization algorithm, named Hybrid Slime Mould Salp Swarm Algorithm (HSMSSA), is proposed to solve constrained engineering problems. SSA can obtain good results in solving some optimization problems. However, it is easy to suffer from local minima and lower density of population. SMA specializes in global exploration and good robustness, but its convergence rate is too slow to find satisfactory solutions efficiently. Thus, in this paper, considering the characteristics and advantages of both the above optimization algorithms, SMA is integrated into the leader position updating equations of SSA, which can share helpful information so that the proposed algorithm can utilize these two algorithms’ advantages to enhance global optimization performance. Furthermore, Levy flight is utilized to enhance the exploration ability. It is worth noting that a novel strategy called mutation opposition-based learning is proposed to enhance the performance of the hybrid optimization algorithm on premature convergence avoidance, balance between exploration and exploitation phases, and finding satisfactory global optimum. To evaluate the efficiency of the proposed algorithm, HSMSSA is applied to 23 different benchmark functions of the unimodal and multimodal types. Additionally, five classical constrained engineering problems are utilized to evaluate the proposed technique’s practicable abilities. The simulation results show that the HSMSSA method is more competitive and presents more engineering effectiveness for real-world constrained problems than SMA, SSA, and other comparative algorithms. In the end, we also provide some potential areas for future studies such as feature selection and multilevel threshold image segmentation.


Sign in / Sign up

Export Citation Format

Share Document