Appraisal of land use/land cover of mangrove forest ecosystem using support vector machine

2013 ◽  
Vol 71 (5) ◽  
pp. 2245-2255 ◽  
Author(s):  
Sudhir Kumar Singh ◽  
Prashant K. Srivastava ◽  
Manika Gupta ◽  
Jay Krishna Thakur ◽  
Saumitra Mukherjee
2021 ◽  
Vol 13 (16) ◽  
pp. 3337
Author(s):  
Shaker Ul Din ◽  
Hugo Wai Leung Mak

Land-use/land cover change (LUCC) is an important problem in developing and under-developing countries with regard to global climatic changes and urban morphological distribution. Since the 1900s, urbanization has become an underlying cause of LUCC, and more than 55% of the world’s population resides in cities. The speedy growth, development and expansion of urban centers, rapid inhabitant’s growth, land insufficiency, the necessity for more manufacture, advancement of technologies remain among the several drivers of LUCC around the globe at present. In this study, the urban expansion or sprawl, together with spatial dynamics of Hyderabad, Pakistan over the last four decades were investigated and reviewed, based on remotely sensed Landsat images from 1979 to 2020. In particular, radiometric and atmospheric corrections were applied to these raw images, then the Gaussian-based Radial Basis Function (RBF) kernel was used for training, within the 10-fold support vector machine (SVM) supervised classification framework. After spatial LUCC maps were retrieved, different metrics like Producer’s Accuracy (PA), User’s Accuracy (UA) and KAPPA coefficient (KC) were adopted for spatial accuracy assessment to ensure the reliability of the proposed satellite-based retrieval mechanism. Landsat-derived results showed that there was an increase in the amount of built-up area and a decrease in vegetation and agricultural lands. Built-up area in 1979 only covered 30.69% of the total area, while it has increased and reached 65.04% after four decades. In contrast, continuous reduction of agricultural land, vegetation, waterbody, and barren land was observed. Overall, throughout the four-decade period, the portions of agricultural land, vegetation, waterbody, and barren land have decreased by 13.74%, 46.41%, 49.64% and 85.27%, respectively. These remotely observed changes highlight and symbolize the spatial characteristics of “rural to urban transition” and socioeconomic development within a modernized city, Hyderabad, which open new windows for detecting potential land-use changes and laying down feasible future urban development and planning strategies.


Author(s):  
F. Bektas Balcik ◽  
A. Karakacan Kuzucu

Land use/ land cover (LULC) classification is a key research field in remote sensing. With recent developments of high-spatial-resolution sensors, Earth-observation technology offers a viable solution for land use/land cover identification and management in the rural part of the cities. There is a strong need to produce accurate, reliable, and up-to-date land use/land cover maps for sustainable monitoring and management. In this study, SPOT 7 imagery was used to test the potential of the data for land cover/land use mapping. Catalca is selected region located in the north west of the Istanbul in Turkey, which is mostly covered with agricultural fields and forest lands. The potentials of two classification algorithms maximum likelihood, and support vector machine, were tested, and accuracy assessment of the land cover maps was performed through error matrix and Kappa statistics. The results indicated that both of the selected classifiers were highly useful (over 83% accuracy) in the mapping of land use/cover in the study region. The support vector machine classification approach slightly outperformed the maximum likelihood classification in both overall accuracy and Kappa statistics.


Author(s):  
Haslina Hashim ◽  
Zulkiflee Abd Latif ◽  
Nor Aizam Adnan

<p>Rapid development in certain urban area will affect its natural features. Therefore, it is important to identify and determine the changes occur for further analysis and future development planning. This process will influence several factors such as area development, environmental issues and human social activities. The selection of remote sensing data and method will derive the accurate land use land cover maps. This research study accessed the classification accuracy of different classifier approach for land use land cover classification in urban area. The objective of this paper is to compare the accuracy of the classification for each technique used. The study was conducted in a highly urbanized area in Kuala Lumpur, Malaysia. The dataset used for this study is the multi temporal LANDSAT satellite imageries for the year of 2001,2006,2011 and 2016. The pre-processing and analysis of the dataset has been done using software ENVI 5.3. Five land use classes (Urban/built up area, Forest, Agriculture, Water Body and fallow land) were identify for classification process. The classification approach for this study is the supervised classification with two algorithms namely Maximum Likelihood (ML) and Support Vector Machine (SVM). The overall accuracy and kappa statistic of the classification indicate that support vector machine algorithm was more accurate than maximum likelihood algorithm for five different time intervals.Therefore, this classification approach is acceptable and highly recommended for mapping the changes of land cover.</p>


Author(s):  
A. Jamali ◽  
A. Abdul Rahman

Abstract. Environmental change monitoring in earth sciences needs land use land cover change (LULCC) modeling to investigate the impact of climate change phenomena such as droughts and floods on earth surface land cover. As land cover has a direct impact on Land Surface Temperature (LST), the Land cover mapping is an essential part of climate change modeling. In this paper, for land use land cover mapping (LULCM), image classification of Sentinel-1A Synthetic Aperture Radar (SAR) Ground Range Detected (GRD) data using two machine learning algorithms including Support Vector Machine (SVM) and Random Forest (RF) are implemented in R programming language and compared in terms of overall accuracy for image classification. Considering eight different scenarios defined in this research, RF and SVM classification methods show their best performance with overall accuracies of 90.81 and 92.09 percent respectively.


Author(s):  
A. Jamali

<p><strong>Abstract.</strong> Due to concerns of recent earth climate changes such as an increase of earth surface temperature and monitoring its effect on earth surface, environmental monitoring is a necessity. Environmental change monitoring in earth sciences needs land use land cover change (LULCC) modelling as a key factor to investigate impact of climate change phenomena such as droughts and floods on earth surface land cover. There are several free and commercial multi/hyper spectral data sources of Earth Observation (EO) satellites including Landsat, Sentinel and Spot. In this paper, for land use land cover modelling (LULCM), image classification of Landsat 8 using several mathematical and machine learning algorithms including Support Vector Machine (SVM), Random Forest (RF), Maximum Likelihood (ML) and a combination of SVM, ML and RF as a fit-for-purpose algorithm are implemented in R programming language and compared in terms of overall accuracy for image classification.</p>


2018 ◽  
Vol 7 (2.14) ◽  
pp. 529
Author(s):  
K V Ramana Rao ◽  
P Rajesh Kumar

The polarimetric SAR data of the space borne sensor, ENVISAT-ASAR (Environmental Satellite - Academic & Science Astronomy & Space Science) has been used for the land use land cover classification of the study area. It was an earth observing satellite operated by the European Space Agency (ESA). Its mission was to observe the earth and monitor critical aspects of the environment such as climatic changes on the earth at the local, regional and global levels. The data set of this sensor is a dual co-polarization amplitude data consisting of HH and VV channels. Initially various incidence angle images such as sigma naught, beta naught and gamma naught have been generated for both HH and VV polarizations. Then the backscattering coefficients of different features such as water, bare soil, vegetation and urban have been calculated. The backscattering coefficient values of the HH polarization are high compared to the values that are obtained with VV polarization. Then the land use land cover classification has been done by implementing different supervised classification algorithms. These classification methods are Parallelepiped, Minimum Distance, Mahalanobis, Maximum Likelihood, Binary Coding and Support Vector Machine. Then the accuracy measurements have been done for all these classification methods. In the present study the accuracy results obtained with the supervised Support Vector Machine classification algorithm are more compared to the accuracy results obtained with the other supervised classification methods.


2020 ◽  
Vol 12 (6) ◽  
pp. 2377 ◽  
Author(s):  
John Mawenda ◽  
Teiji Watanabe ◽  
Ram Avtar

Rapid and unplanned urban growth has adverse environmental and social consequences. This is prominent in sub-Saharan Africa where the urbanisation rate is high and characterised by the proliferation of informal settlements. It is, therefore, crucial that urban land use/land cover (LULC) changes be investigated in order to enhance effective planning and sustainable growth. In this paper, the spatial and temporal LULC changes in Blantyre city were studied using the integration of remotely sensed Landsat imageries of 1994, 2007 and 2018, and a geographic information system (GIS). The supervised classification method using the support vector machine algorithm was applied to generate the LULC maps. The study also analysed the transition matrices derived from the classified map to identify prominent processes of changes for planning prioritisation. The results showed that the built-up class, which included urban structures such as residential, industrial, commercial and public installations, increased in the 24-year study period. On the contrary, bare land, which included vacant lands, open spaces with little or no vegetation, hilly clear-cut areas and other fallow land, declined over the study period. This was also the case with the vegetation class (i.e., forests, parks, permanent tree-covered areas and shrubs). The post-classification results revealed that the LULC changes during the second period (2007–2018) were faster compared to the first period (1994–2007). Furthermore, the results revealed that the increase in built-up areas systematically targeted the bare land and avoided the vegetated areas, and that the vegetated areas were systematically cleared to bare land during the study period (1994–2018). The findings of this study have revealed the pressure of human activities on the land and natural environment in Blantyre and provided the basis for sustainable urban planning and development in Blantyre city.


Author(s):  
V. N. Mishra ◽  
P. Kumar ◽  
D. K. Gupta ◽  
R. Prasad

Land use land cover classification is one of the widely used applications in the field of remote sensing. Accurate land use land cover maps derived from remotely sensed data is a requirement for analyzing many socio-ecological concerns. The present study investigates the capabilities of dual polarimetric C-band SAR data for land use land cover classification. The MRS mode level 1 product of RISAT-1 with dual polarization (HH & HV) covering a part of Varanasi district, Uttar Pradesh, India is analyzed for classifying various land features. In order to increase the amount of information in dual-polarized SAR data, a band HH + HV is introduced to make use of the original two polarizations. Transformed Divergence (TD) procedure for class separability analysis is performed to evaluate the quality of the statistics prior to image classification. For most of the class pairs the TD values are greater than 1.9 which indicates that the classes have good separability. Non-parametric classifier Support Vector Machine (SVM) is used to classify RISAT-1 data with optimized polarization combination into five land use land cover classes like urban land, agricultural land, fallow land, vegetation and water bodies. The overall classification accuracy achieved by SVM is 95.23 % with Kappa coefficient 0.9350.


Sign in / Sign up

Export Citation Format

Share Document