Effect of injection rate on hydraulic fracturing in naturally fractured shale formations: a numerical study

2016 ◽  
Vol 75 (11) ◽  
Author(s):  
Y. Wang ◽  
X. Li ◽  
C. A. Tang
SPE Journal ◽  
2017 ◽  
Vol 22 (04) ◽  
pp. 1064-1081 ◽  
Author(s):  
Sanbai Li ◽  
Dongxiao Zhang ◽  
Xiang Li

Summary A fully coupled thermal/hydromechanical (THM) model for hydraulic-fracturing treatments is developed in this study. In this model, the mixed finite-volume/finite-element method is used to solve the coupled system, in which the multipoint flux approximation L-method is used to calculate interelement fluid and heat flux. The Gu et al. (2011) crossing criterion is extended to a 3D scenario to delineate the crossing behaviors as hydraulic fractures meet inclined natural fractures. Moreover, the modified Barton et al. (1985) model proposed by Asadollahi et al. (2010) is used to estimate the fracture aperture and model the shear-dilation effect. After being (partially) verified by means of comparison with results from the literature, the developed model is used to investigate complex-fracture-network propagation in naturally fractured reservoirs. Numerical experiments show that the key factors controlling the complexity of the induced-fracture networks include stress anisotropy, injection rate, natural-fracture distribution (fracture-dip angle, strike angle, spacing, density, and length), fracture-filling properties (the degree of cementation and permeability), fracture-surface properties (cohesion and friction angle), and tensile strength of intact rock. It is found that the smaller the stress anisotropy and/or the lower the injection rate, the more complex the fracture network; a high rock tensile strength could increase the possibility of the occurrence of shear fractures; and under conditions of large permeability of fracture filling combined with small cohesive strength and friction coefficient, shear slip could become the dominant mechanism for generating complex-fracture networks. The model developed and the results presented can be used to understand the propagation of complex-fracture networks and aid in the design and optimization of hydraulic-fracturing treatments.


2020 ◽  
Vol 35 (6) ◽  
pp. 325-339
Author(s):  
Vasily N. Lapin ◽  
Denis V. Esipov

AbstractHydraulic fracturing technology is widely used in the oil and gas industry. A part of the technology consists in injecting a mixture of proppant and fluid into the fracture. Proppant significantly increases the viscosity of the injected mixture and can cause plugging of the fracture. In this paper we propose a numerical model of hydraulic fracture propagation within the framework of the radial geometry taking into account the proppant transport and possible plugging. The finite difference method and the singularity subtraction technique near the fracture tip are used in the numerical model. Based on the simulation results it was found that depending on the parameters of the rock, fluid, and fluid injection rate, the plugging can be caused by two reasons. A parameter was introduced to separate these two cases. If this parameter is large enough, then the plugging occurs due to reaching the maximum possible concentration of proppant far from the fracture tip. If its value is small, then the plugging is caused by the proppant reaching a narrow part of the fracture near its tip. The numerical experiments give an estimate of the radius of the filled with proppant part of the fracture for various injection rates and leakages into the rock.


2020 ◽  
Vol 10 (8) ◽  
pp. 3333-3345
Author(s):  
Ali Al-Rubaie ◽  
Hisham Khaled Ben Mahmud

Abstract All reservoirs are fractured to some degree. Depending on the density, dimension, orientation and the cementation of natural fractures and the location where the hydraulic fracturing is done, preexisting natural fractures can impact hydraulic fracture propagation and the associated flow capacity. Understanding the interactions between hydraulic fracture and natural fractures is crucial in estimating fracture complexity, stimulated reservoir volume, drained reservoir volume and completion efficiency. However, because of the presence of natural fractures with diffuse penetration and different orientations, the operation is complicated in naturally fractured gas reservoirs. For this purpose, two numerical methods are proposed for simulating the hydraulic fracture in a naturally fractured gas reservoir. However, what hydraulic fracture looks like in the subsurface, especially in unconventional reservoirs, remain elusive, and many times, field observations contradict our common beliefs. In this study, the hydraulic fracture model is considered in terms of the state of tensions, on the interaction between the hydraulic fracture and the natural fracture (45°), and the effect of length and height of hydraulic fracture developed and how to distribute induced stress around the well. In order to determine the direction in which the hydraulic fracture is formed strikethrough, the finite difference method and the individual element for numerical solution are used and simulated. The results indicate that the optimum hydraulic fracture time was when the hydraulic fracture is able to connect natural fractures with large streams and connected to the well, and there is a fundamental difference between the tensile and shear opening. The analysis indicates that the growing hydraulic fracture, the tensile and shear stresses applied to the natural fracture.


2018 ◽  
Vol 52 (2) ◽  
pp. 575-589 ◽  
Author(s):  
Li Zhuang ◽  
Kwang Yeom Kim ◽  
Sung Gyu Jung ◽  
Melvin Diaz ◽  
Ki-Bok Min

Author(s):  
Alex Prud’Homme

What Are Shale Plays, and Where Are the Major Shale Plays in the United States? As mentioned, the purpose of hydraulic fracturing is to access natural gas and oil trapped in shale formations, also known as “plays.” Shale plays are found across the United States...


Sign in / Sign up

Export Citation Format

Share Document