Isotopic signatures of precipitation, surface water, and groundwater interactions, Poyang Lake Basin, China

2016 ◽  
Vol 75 (19) ◽  
Author(s):  
Lucheng Zhan ◽  
Jiansheng Chen ◽  
Shiyin Zhang ◽  
Ling Li ◽  
Dewen Huang ◽  
...  
2013 ◽  
Vol 49 (2) ◽  
pp. 188-196 ◽  
Author(s):  
Chunhua Hu ◽  
Klaus Froehlich ◽  
Peng Zhou ◽  
Qian Lou ◽  
Simiao Zeng ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1654
Author(s):  
Xiaodong Chu ◽  
Hao Wang ◽  
Fangwen Zheng ◽  
Cheng Huang ◽  
Chunxia Xu ◽  
...  

In December of 2019, a total of 114 river water samples were collected from 38 sampling sites in the Xiujiang River of the Poyang Lake Basin for three consecutive days. The temperature (T), pH, dissolved oxygen (DO), chemical oxygen demand (CODCr), five-day biochemical oxygen demand (BOD5), total nitrogen (TN), ammonia nitrogen (NH4+-N), total phosphorus (TP), and concentrations of heavy metals (Cr, Cu, Zn and As) of the samples were measured. The results showed that the average concentrations of heavy metals in the mainstream of the Xiujiang River were Cu > Zn > Cr > As, and those in the main tributary of Xiujiang River (named as the Liaohe tributary) were Zn > Cu > Cr > As, which met the class III of the Environmental Quality Standards for Surface Water in China. However, it was founded that TN and NH4+-N in some agricultural areas had not met the class III standard of surface water. Hierarchical clustering analysis grouped sampling sites into four clusters. Clusters 1, cluster 2, cluster 3, and cluster 4 corresponded to an urban industrial area, rural mountainous area, primitive mountainous area, and agricultural area, respectively. The majority of the sampling sites were classified as mountainous rural areas less impacted by human activities, while the Liaohe tributary were urban industrial areas impacted more by human activities. Principal component analysis and correlation analysis results showed that variation of heavy metals and nutrient elements in Xiujiang River is related to the heterogeneity of human activities, which is mainly affected by urban industrial and agricultural pollution, and natural environments of the river with different background values. The results obtained in the current study will potentially provide a scientific basis for the protection and management of freshwater resources and aquatic ecosystems in the Xiujiang River and Poyang Lake Basin.


2012 ◽  
Vol 16 (7) ◽  
pp. 2005-2020 ◽  
Author(s):  
S. L. Sun ◽  
H. S. Chen ◽  
W. M. Ju ◽  
J. Song ◽  
J. J. Li ◽  
...  

Abstract. To understand the causes of the past water cycle variations and the influence of climate variability on the streamflow, lake storage, and flood potential, we analyze the changes in streamflow and the underlying drivers in four typical watersheds (Gaosha, Meigang, Saitang, and Xiashan) within the Poyang Lake Basin, based on the meteorological observations at 79 weather stations, and datasets of streamflow and river level at four hydrological stations for the period of 1961-2000. The contribution of different climate factors to the change in streamflow in each watershed is estimated quantitatively using the water balance equations. Results show that in each watershed, the annual streamflow exhibits an increasing trend from 1961–2000. The increases in streamflow by 4.80 m3 s−1 yr−1 and 1.29 m3 s−1 yr−1 at Meigang and Gaosha, respectively, are statistically significant at the 5% level. The increase in precipitation is the biggest contributor to the streamflow increment in Meigang (3.79 m3 s−1 yr−1), Gaosha (1.12 m3 s−1 yr−1), and Xiashan (1.34 m3 s−1 yr−1), while the decrease in evapotranspiration is the major factor controlling the streamflow increment in Saitang (0.19 m3 s−1 yr−1). In addition, radiation and wind contribute more than actual vapor pressure and mean temperature to the changes in evapotranspiration and streamflow for the four watersheds. For revealing the possible change of streamflow due to the future climate change, we also investigate the projected precipitation and evapotranspiration from of the Coupled Model Intercomparison Project phase 3 (CMIP3) under three greenhouse gases emission scenarios (SRESA1B, SRESA2 and SRESB1) for the period of 2061–2100. When the future changes in the soil water storage changes are assumed ignorable, the streamflow shows an uptrend with the projected increases in both precipitation and evapotranspiration (except for the SRESB1 scenario in Xiashan watershed) relative to the observed mean during 1961–2000. Furthermore, the largest increase in the streamflow is found at Meigang (+4.31%) and Xiashan (+3.84%) under the SRESA1B scenario, while the increases will occur at Saitang (+6.87%) and Gaosha (+5.15%) under the SRESB1 scenario.


2011 ◽  
Vol 63 (9) ◽  
pp. 1899-1905 ◽  
Author(s):  
Meiqiu Chen ◽  
Xiaohua Wei ◽  
Hongsheng Huang ◽  
Tiangui Lü

Protection of water environment while developing socio-economy is a challenging task for lake regions of many developing countries. Poyang Lake is the largest fresh water lake in China, with its total drainage area of 160,000 km2. In spite of rapid development of socio-economy in Poyang Lake region in the past several decades, water in Poyang Lake is of good quality and is known as the “last pot of clear water” of the Yangtze River Basin in China. In this paper, the reasons of “last pot of clear water” of Poyang Lake were analysed to demonstrate how economic development and environmental protection can be coordinated. There are three main reasons for contributing to this coordinated development: 1) the unique geomorphologic features of Poyang Lake and the short water residence time; 2) the matching of the basin physical boundary with the administrative boundary; and 3) the implementation of “Mountain-River-Lake Program” (MRL), with the ecosystem concept of “mountain as source, river as connection flow, and lake as storage”. In addition, a series of actions have been taken to coordinate development, utilisation, management and protection in the Poyang Lake basin. Our key experiences are: considering all basin components when focusing on lake environment protection is a guiding principle; raising the living standard of people through implementation of various eco-economic projects or models in the basin is the most important strategy; preventing soil and water erosion is critical for protecting water sources; and establishing an effective governance mechanism for basin management is essential. This successful, large-scale basin management model can be extended to any basin or lake regions of developing countries where both environmental protection and economic development are needed and coordinated.


Sign in / Sign up

Export Citation Format

Share Document