Effect of Aging Temperature on Microstructure and Tensile Properties of Inconel 718 Fabricated by Selective Laser Melting

Author(s):  
Jianna Huang ◽  
Zhuo Huang ◽  
Heng Du ◽  
Jiexi Zhang
2020 ◽  
Vol 20 (11) ◽  
pp. 6807-6814
Author(s):  
Jungsub Lee ◽  
Minshik Lee ◽  
Im Doo Jung ◽  
Jungho Choe ◽  
Ji-Hun Yu ◽  
...  

The correlation between microstructure and tensile properties of selective laser melting (SLM) processed STS 316L and Inconel 718 were investigated at various heights (top, middle and bottom) and planes (YZ, ZX and XY). Columnar grains and dendrites were formed by directional growth during solidification. The average melt pool width and depth, and scan track width were similar in both specimens due to fixed processing parameters. SLM Inconel 718 has moderate tensile strength (1165 MPa) and tensile elongation (11.5%), whereas SLM STS 316L has outstanding tensile strength (656 MPa) and tensile elongation (75%) compared to other SLM processed STS 316L. Fine columnar diameter (0.5 μm) and dense microstructures (porosity: 0.35%) in SLM STS 316L promoted the enhancement of tensile elongation by suitable processing condition. Fractographic analysis suggested that the lack of fusion pore with unmelted powder should be avoided to increase tensile properties by controlling processing parameters.


Author(s):  
Minglin He ◽  
Yong Ni ◽  
Shuai Wang

In this work, we investigated the microstructure and tensile properties of Inconel 718 alloy processed by selective laser melting (SLM) and conventional casting technique using multiscale characterization methods. Results indicated that a columnar grain structure containing cellular structure units with submicron size was the major feature in the as-printed Inconel 718 alloy. At the cellular structure boundaries, the high-density dislocation tangles, segregation of Nb/Mo atoms and nano-sized Laves phases were found. Meanwhile, we also observed dislocation pile-ups and stacking faults in the interior of the cellular structure. In contrast, in the as-cast Inconel 718 alloy, both the grains and Laves phases were much coarser. Discrete dislocations, dislocation tangles and [Formula: see text]” precipitates were locally observed in the grains. Tensile results showed the as-printed Inconel 718 alloy had a higher strength and a lower elongation in comparison with those in the as-cast alloy. Based on the experimental results, the formation mechanism of the cellular structure was discussed.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 205
Author(s):  
Ruochen Ding ◽  
Jun Yao ◽  
Baorui Du ◽  
Kailun Li ◽  
Tao Li ◽  
...  

In recent years, selective laser melting (SLM) has been widely used in aerospace, automobile, biomedicine and other fields. However, there still remain many challenges to obtain consistent parts at the different positions on the base plate, which could be harmful to the industrial mass-production. In SLM process, the process by-products that flow with the shielding gas may influence the microstructure and tensile properties of the parts placed on different positions of the base plate. In this study, the velocity field of the shielding gas with different shielding gas volume flows was simulated. The tensile properties of the samples fabricated with different shielding gas volume flow were experimentally studied. The results show that the shielding gas volume flow has a strong influence on the sample consistency, and proper increase in shielding gas volume flows can be beneficial to consistency and tensile strength.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1001
Author(s):  
Zongxian Song ◽  
Wenbin Gao ◽  
Dongpo Wang ◽  
Zhisheng Wu ◽  
Meifang Yan ◽  
...  

This study investigates the very-high-cycle fatigue (VHCF) behavior at elevated temperature (650 °C) of the Inconel 718 alloy fabricated by selective laser melting (SLM). The results are compared with those of the wrought alloy. Large columnar grain with a cellular structure in the grain interior and Laves/δ phases precipitated along the grain boundaries were exhibited in the SLM alloy, while fine equiaxed grains were present in the wrought alloy. The elevated temperature had a minor effect on the fatigue resistance in the regime below 108 cycles for the SLM alloy but significantly reduced the fatigue strength in the VHCF regime above 108 cycles. Both the SLM and wrought specimens exhibited similar fatigue resistance in the fatigue life regime of fewer than 107–108 cycles at elevated temperature, and the surface initiation mechanism was dominant in both alloys. In a VHCF regime above 107–108 cycles at elevated temperature, the wrought material exhibited slightly better fatigue resistance than the SLM alloy. All fatigue cracks are initiated from the internal defects or the microstructure discontinuities. The precipitation of Laves and δ phases is examined after fatigue tests at high temperatures, and the effect of microstructure on the formation and the propagation of the microstructural small cracks is also discussed.


Sign in / Sign up

Export Citation Format

Share Document