Tidal Wetland Resilience to Increased Rates of Sea Level Rise in the Chesapeake Bay: Introduction to the Special Feature

Wetlands ◽  
2020 ◽  
Vol 40 (6) ◽  
pp. 1667-1671
Author(s):  
Taryn A. Sudol ◽  
Gregory B. Noe ◽  
Denise J. Reed
2019 ◽  
Author(s):  
Soely Luyando-Flusa ◽  
◽  
Christopher J. Hein ◽  
Leslie Reeder-Myers ◽  
Torben Rick ◽  
...  

2021 ◽  
Vol 9 (7) ◽  
pp. 751
Author(s):  
Jenny R. Allen ◽  
Jeffrey C. Cornwell ◽  
Andrew H. Baldwin

Persistence of tidal wetlands under conditions of sea level rise depends on vertical accretion of organic and inorganic matter, which vary in their relative abundance across estuarine gradients. We examined the relative contribution of organic and inorganic matter to vertical soil accretion using lead-210 (210Pb) dating of soil cores collected in tidal wetlands spanning a tidal freshwater to brackish gradient across a Chesapeake Bay subestuary. Only 8 out of the 15 subsites had accretion rates higher than relative sea level rise for the area, with the lowest rates of accretion found in oligohaline marshes in the middle of the subestuary. The mass accumulation of organic and inorganic matter was similar and related (R2 = 0.37). However, owing to its lower density, organic matter contributed 1.5–3 times more toward vertical accretion than inorganic matter. Furthermore, water/porespace associated with organic matter accounted for 82%–94% of the total vertical accretion. These findings demonstrate the key role of organic matter in the persistence of coastal wetlands with low mineral sediment supply, particularly mid-estuary oligohaline marshes.


2019 ◽  
Vol 95 (1) ◽  
pp. 19-34 ◽  
Author(s):  
Patrick Walsh ◽  
Charles Griffiths ◽  
Dennis Guignet ◽  
Heather Klemick

1990 ◽  
Vol 34 (1) ◽  
pp. 33-46 ◽  
Author(s):  
Joseph F. Donoghue

AbstractTrends are discernible in the estimates of late Holocene rates of sedimentation and sea-level rise for the Chesapeake Bay. During most of the Holocene Epoch sedimentation rates and relative sea-level rise were equal, within the limits of measurement, at approximately 1 mm yr−1. Sedimentation rates measured over the past century, however, are nearly an order of magnitude higher, while the rate of relative sea-level rise for the Chesapeake Bay now averages 3.3 mm yr−1, as measured on long-term tide gauge records. When the acceleration in these rates occurred is uncertain, but it appears to have been confined to the past millennium, and probably to the past few centuries. The rapid sedimentation rates recorded during historic time may be a temporary disequilibrium that has resulted from a recent acceleration in the rate of relative sea-level rise.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Faming Wang ◽  
Xiaoliang Lu ◽  
Christian J. Sanders ◽  
Jianwu Tang

AbstractCoastal wetlands are large reservoirs of soil carbon (C). However, the annual C accumulation rates contributing to the C storage in these systems have yet to be spatially estimated on a large scale. We synthesized C accumulation rate (CAR) in tidal wetlands of the conterminous United States (US), upscaled the CAR to national scale, and predicted trends based on climate change scenarios. Here, we show that the mean CAR is 161.8 ± 6 g Cm−2 yr−1, and the conterminous US tidal wetlands sequestrate 4.2–5.0 Tg C yr−1. Relative sea level rise (RSLR) largely regulates the CAR. The tidal wetland CAR is projected to increase in this century and continue their C sequestration capacity in all climate change scenarios, suggesting a strong resilience to sea level rise. These results serve as a baseline assessment of C accumulation in tidal wetlands of US, and indicate a significant C sink throughout this century.


Sign in / Sign up

Export Citation Format

Share Document