scholarly journals Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Faming Wang ◽  
Xiaoliang Lu ◽  
Christian J. Sanders ◽  
Jianwu Tang

AbstractCoastal wetlands are large reservoirs of soil carbon (C). However, the annual C accumulation rates contributing to the C storage in these systems have yet to be spatially estimated on a large scale. We synthesized C accumulation rate (CAR) in tidal wetlands of the conterminous United States (US), upscaled the CAR to national scale, and predicted trends based on climate change scenarios. Here, we show that the mean CAR is 161.8 ± 6 g Cm−2 yr−1, and the conterminous US tidal wetlands sequestrate 4.2–5.0 Tg C yr−1. Relative sea level rise (RSLR) largely regulates the CAR. The tidal wetland CAR is projected to increase in this century and continue their C sequestration capacity in all climate change scenarios, suggesting a strong resilience to sea level rise. These results serve as a baseline assessment of C accumulation in tidal wetlands of US, and indicate a significant C sink throughout this century.

2020 ◽  
Author(s):  
Faming Wang ◽  
Christian J Sanders ◽  
Isaac R Santos ◽  
Jianwu Tang ◽  
Mark Schurech ◽  
...  

Abstract Coastal tidal wetlands produce and accumulate significant amounts of organic carbon (C) that help to mitigate climate change. However, previous data limitations have prevented a robust evaluation of the global rates and mechanisms driving C accumulation. Here, we go beyond recent soil C stock estimates to reveal global tidal wetland C accumulation and predict changes under relative sea-level rise, temperature and precipitation. We use data from literature study sites and our new observations spanning wide latitudinal gradients and 20 countries. Globally, tidal wetlands accumulate 53.65 (95%CI: 48.52–59.01) Tg C yr−1, which is ∼30% of the organic C buried on the ocean floor. Modelling based on current climatic drivers and under projected emissions scenarios revealed a net increase in the global C accumulation by 2100. This rapid increase is driven by sea-level rise in tidal marshes, and higher temperature and precipitation in mangroves. Countries with large areas of coastal wetlands, like Indonesia and Mexico, are more susceptible to tidal wetland C losses under climate change, while regions such as Australia, Brazil, the USA and China will experience a significant C accumulation increase under all projected scenarios.


One Earth ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 425-433
Author(s):  
Ellen R. Herbert ◽  
Lisamarie Windham-Myers ◽  
Matthew L. Kirwan

2021 ◽  
Vol 8 ◽  
Author(s):  
Angel Amores ◽  
Marta Marcos ◽  
Rodrigo Pedreros ◽  
Gonéri Le Cozannet ◽  
Sophie Lecacheux ◽  
...  

The Maldives, with one of the lowest average land elevations above present-day mean sea level, is among the world regions that will be the most impacted by mean sea-level rise and marine extreme events induced by climate change. Yet, the lack of regional and local information on marine drivers is a major drawback that coastal decision-makers face to anticipate the impacts of climate change along the Maldivian coastlines. In this study we focus on wind-waves, the main driver of extremes causing coastal flooding in the region. We dynamically downscale large-scale fields from global wave models, providing a valuable source of climate information along the coastlines with spatial resolution down to 500 m. This dataset serves to characterise the wave climate around the Maldives, with applications in regional development and land reclamation, and is also an essential input for local flood hazard modelling. We illustrate this with a case study of HA Hoarafushi, an atoll island where local topo-bathymetry is available. This island is exposed to the highest incoming waves in the archipelago and recently saw development of an airport island on its reef via land reclamation. Regional waves are propagated toward the shoreline using a phase-resolving model and coastal inundation is simulated under different mean sea-level rise conditions of up to 1 m above present-day mean sea level. The results are represented as risk maps with different hazard levels gathering inundation depth and speed, providing a clear evidence of the impacts of the sea level rise combined with extreme wave events.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jean-François Legeais ◽  
Benoît Meyssignac ◽  
Yannice Faugère ◽  
Adrien Guerou ◽  
Michaël Ablain ◽  
...  

It is essential to monitor accurately current sea level changes to better understand and project future sea level rise (SLR). This is the basis to support the design of adaptation strategies to climate change. Altimeter sea level products are operationally produced and distributed by the E.U. Copernicus services dedicated to the marine environment (CMEMS) and climate change (C3S). The present article is a review paper that intends to explain why and to which extent the sea level monitoring indicators derived from these products are appropriate to develop adaptation strategies to SLR. We first present the main key scientific questions and challenges related to SLR monitoring. The different processing steps of the altimeter production system are presented including those ensuring the quality and the stability of the sea level record (starting in 1993). Due to the numerous altimeter algorithms required for the production, it is complex to ensure both the retrieval of high-resolution mesoscale signals and the stability of the large-scale wavelengths. This has led to the operational production of two different sea level datasets whose specificities are characterized. We present the corresponding indicators: the global mean sea level (GMSL) evolution and the regional map of sea level trends, with their respective uncertainties. We discuss how these products and associated indicators support adaptation to SLR, and we illustrate with an example of downstream application. The remaining gaps are analyzed and recommendations for the future are provided.


2019 ◽  
Author(s):  
Brooke L. Bateman ◽  
Lotem Taylor ◽  
Chad Wilsey ◽  
Joanna Wu ◽  
Geoffrey S. LeBaron ◽  
...  

AbstractClimate change is a significant threat to biodiversity globally, compounded by threats that could hinder species’ ability to respond through range shifts. However, little research has examined how future bird ranges may coincide with multiple stressors at a broad scale. Here, we assess the risk to 544 birds in the United States from future climate change threats under a mitigation-dependent global warming scenario of 1.5°C and an unmitigated scenario of 3.0°C. Threats considered included sea level rise, lake level change, human land cover conversion, and extreme weather events. We developed a gridded index of risk based on coincident threats, species richness, and richness of vulnerable species. To assign risk to individual species and habitat groups, we overlaid future bird ranges with threats to calculate the proportion of species’ ranges affected in both the breeding and non-breeding seasons. Nearly all species will face at least one new climate-related threat in each season and scenario analyzed. Even with lower species richness, the 3.0°C scenario had higher risk for species and groups in both seasons. With unmitigated climate change, multiple coincident threats will affect over 88% of the conterminous United States, and 97% of species could be affected by two or more climate-related threats. Some habitat groups will see up to 96% species facing three or more threats. However, climate change mitigation would reduce risk to birds from climate change-related threats across over 90% of the US. Across the threats included here, extreme weather events have the most significant influence on risk and the most extensive spatial coverage. Urbanization and sea level rise will also have disproportionate impacts on species relative to the area they cover. By incorporating threats into predictions of climate change impacts, this assessment provides a comprehensive picture of how climate change will affect birds and the places they need.


Author(s):  
Van Manh Dinh ◽  
Thu Ha Tran ◽  
Manh Chien Truong

Viet Nam is considered one of countries most affected by climate change and sea-level rise. It results in many negative effects, such as flooding, saline intrusion and beach erosion occurred in the coastal zones. Quang Ninh with more than 250 km coastline, located in the northeastern part of Vietnam, is one of the vulnerable coastal provinces under the heavily affected due to the sea level rise. In order to evaluate the changes of flooded areas and tidal beaches due to the sea level rise in Quang Ninh coastal zone a 2D numerical model is set up, using the 3-grids nesting technique. The numerical model is calibrated by using the harmonic constants of 8 tidal constituents at Hon Dau tide station and validated with the observed data. On the basis of the climate change scenarios (RCP4.5, RCP8.5) in the period from 2020 to 2100, the corresponding sea level values are used in the numerical modeling to calculate the changes of flooded areas and tidal beaches due to the sea level rise. The obtained results on changing of the flooded area and tidal beach in Quang Ninh coastal zone are not only statically by changing water sea levels but also due to changing of the tidal range in this area. The calculated results point out that districts under the most affected of the sea level rise are Quang Yen, Tien Yen, Hai Ha, Mong Cai.


Author(s):  
Hill and

Whether the world is prepared for it or not, climate change will drive large-scale migration. The impacts of climate change—both slow-onset changes, such as sea-level rise and drought, and sudden-onset events, such as extreme storms and wildfires—push people from their homes. Managed well, migration can yield enormous benefits, offering greater opportunities for those who relocate and injecting new talent and energy into receiver communities. But climate change threatens to unleash “disruptive migration,” that is, sudden migration that could strain social, economic, and political stability. The task ahead in the face of climate change is to encourage managed, gradual migration that minimizes disruption, moves people out of harm’s way, and turns displacement into economic opportunity. This chapter outlines the strategies and tools that exist to make this possible.


Sign in / Sign up

Export Citation Format

Share Document