Near infrared spectroscopy to evaluate change in color and chemical composition in heat-treated bamboo

2020 ◽  
Vol 28 (4) ◽  
pp. 214-223
Author(s):  
Junqian Mo ◽  
Wenbo Zhang ◽  
Xiaohui Fu ◽  
Wei Lu

This study investigated the feasibility of using near infrared spectroscopy technology to predict color and chemical composition in the heat-treated bamboo processing industry. The quantitative presentations of the changes in the chemical components were discussed using the difference spectra method of the 2nd derivative NIR spectra of the heat-treated bamboo samples. Then, the relationships between the color changes of the heat-treated bamboo and its near infrared spectra were constructed using the changes in the chemical components of the bamboo samples during the heating process. The prediction of color and chemical composition of both the outer and inner sides of the heat-treated bamboo surface were constructed using partial least squares regression method combined with a leave-one-out cross-validation process. Then, the results were validated by independent sample sets. The proposed prediction models were found to produce high r2P (above 0.93), RPD (above 3.13), and low RMSEP for both the outer and inner sides of the heat-treated bamboo samples. These studies’ results confirmed that the proposed models, especially outer side models, were perfectly suitable for the in-process inspections of the color and chemical content changes of heat-treated bamboo.

2021 ◽  
Vol 42 (3) ◽  
pp. 1287-1302
Author(s):  
Camila Cano Serafim ◽  
◽  
Geisi Loures Guerra ◽  
Ivone Yurika Mizubuti ◽  
Filipe Alexandre Boscaro de Castro ◽  
...  

The reduction in the quality, consumption, and digestibility of forage can cause a decrease in animal performance, resulting in losses to the rural producer. Thus, it is important to monitor these characteristics in forage plants to devise strategies or practices that optimize production systems. The aim of this study was to develop and validate prediction models using near-infrared spectroscopy (NIRS) to determine the chemical composition of Tifton 85 grass. Samples of green grass, its morphological structures (whole plant, leaf blade, stem + sheath, and senescent material) and hay, totaling 105 samples were used. Conventional chemical analysis was performed to determine the content of oven-dried samples (ODS), mineral matter (MM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), cellulose (CEL), hemicellulose (HEM), and in vitro dry matter digestibility (IVDMD). Subsequently, all the samples were scanned using a Vis-NIR spectrometer to collect spectral data. Principal component analysis (PCA) was applied to the data set, and modified partial least squares was used to correlate reference values to spectral data. The coefficients of determination (R2) were 0.74, 0.85, 0.98, 0.75, 0.85, 0.71, 0.82, 0.77, and 0.93, and the ratio of performance deviations (RPD) obtained were 1.99, 2.71, 6.46, 2.05, 2.58, 3.84, 1.86, 2.35, 2.09, and 3.84 for ODS, MM, CP, NDF, ADF, ADL, CEL, HEM, and IVDMD, respectively. The prediction models obtained, in general, were considered to be of excellent quality, and demonstrated that the determination of the chemical composition of Tifton 85 grass can be performed using NIRS technology, replacing conventional analysis.


2020 ◽  
Vol 60 (1) ◽  
pp. 233-240 ◽  
Author(s):  
Ichwana Ichwana ◽  
Zulkifli Nasution ◽  
Agus Arip Munawar

Groundwater quality in agricultural area is highly affected by human activities. To determine groundwater quality, several methods are widely applied. Yet, most of them are based on standard laboratory analysis which is normally time consuming, expensive, and involve chemical materials from which may cause another environmental pollution. Thus, a rapid, effective and simple alternative method is required to assess groundwater quality. Fourier transform near-infrared spectroscopy (FT-NIRS) is considered to be employed due to its advantages. The main purpose of the present study, is to evaluate the feasibility of FT-NIRS technology in assessing groundwater quality parameters: total dissolved solids (TDS) and Sulfate concentration (SC). Transmission spectra data were acquired for groundwater samples from 8 different wells in wavelength range from 1000 to 2500 nm. Spectra data were corrected by multiplicative signal correction (MSC), while TDS and SC prediction models were established by using partial least squares regression (PLSR) and validated by full cross validation method. Obtained results showed that FTIR is able to detect and predict TDS and SC rapidly. Achieved maximum correlation coefficient (r) and RPD index were 0.86; 1.82 for TDS and 0.83; 1.76 for SC prediction respectively. It may be concluded that FT-NIRS combined with proper multivariate approach, can be used to assess groundwater quality parameters rapidly and simultaneously.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Suk-Ju Hong ◽  
Shin-Joung Rho ◽  
Ah-Yeong Lee ◽  
Heesoo Park ◽  
Jinshi Cui ◽  
...  

Near-infrared spectroscopy and multivariate analysis techniques were employed to nondestructively evaluate the rancidity of perilla seed oil by developing prediction models for the acid and peroxide values. The acid, peroxide value, and transmittance spectra of perilla seed oil stored in two different environments for 96 and 144 h were obtained and used to develop prediction models for different storage conditions and time periods. Preprocessing methods were applied to the transmittance spectra of perilla seed oil, and multivariate analysis techniques, such as principal component regression (PCR), partial least squares regression (PLSR), and artificial neural network (ANN) modeling, were employed to develop the models. Titration analysis shows that the free fatty acids in an oil oxidation process were more affected by relative humidity than temperature, whereas peroxides in an oil oxidation process were more significantly affected by temperature than relative humidity for the two different environments in this study. Also, the prediction results of ANN models for both acid and peroxide values were the highest among the developed models. These results suggest that the proposed near-infrared spectroscopy technique with multivariate analysis can be used for the nondestructive evaluation of the rancidity of perilla seed oil, especially the acid and peroxide values.


2019 ◽  
Vol 59 (6) ◽  
pp. 1190 ◽  
Author(s):  
A. Bahri ◽  
S. Nawar ◽  
H. Selmi ◽  
M. Amraoui ◽  
H. Rouissi ◽  
...  

Rapid measurement optical techniques have the advantage over traditional methods of being faster and non-destructive. In this work visible and near-infrared spectroscopy (vis-NIRS) was used to investigate differences between measured values of key milk properties (e.g. fat, protein and lactose) in 30 samples of ewes milk according to three feed systems; faba beans, field peas and control diet. A mobile fibre-optic vis-NIR spectrophotometer (350–2500 nm) was used to collect reflectance spectra from milk samples. Principal component analysis was used to explore differences between milk samples according to the feed supplied, and a partial least-squares regression and random forest regression were adopted to develop calibration models for the prediction of milk properties. Results of the principal component analysis showed clear separation between the three groups of milk samples according to the diet of the ewes throughout the lactation period. Milk fat, protein and lactose were predicted with good accuracy by means of partial least-squares regression (R2 = 0.70–0.83 and ratio of prediction deviation, which is the ratio of standard deviation to root mean square error of prediction = 1.85–2.44). However, the best prediction results were obtained with random forest regression models (R2 = 0.86–0.90; ratio of prediction deviation = 2.73–3.26). The adoption of the vis-NIRS coupled with multivariate modelling tools can be recommended for exploring to differences between milk samples according to different feed systems, and to predict key milk properties, based particularly on the random forest regression modelling technique.


2017 ◽  
Vol 25 (5) ◽  
pp. 301-310 ◽  
Author(s):  
Jetsada Posom ◽  
Panmanas Sirisomboon

This research aimed to determine the higher heating value, volatile matter, fixed carbon and ash content of ground bamboo using Fourier transform near infrared spectroscopy as an alternative to bomb calorimetry and thermogravimetry. Bamboo culms used in this study had circumferences ranging from 16 to 40 cm. Model development was performed using partial least squares regression. The higher heating value, volatile matter, fixed carbon and ash content were predicted with coefficients of determination (r2) of 0.92, 0.82, 0.85 and 0.51; root mean square error of prediction (RMSEP) of 122 J g−1, 1.15%, 1.00% and 0.77%; ratio of the standard deviation to standard error of validation (RPD) of 3.66, 2.55, 2.62 and 1.44; and bias of 14.4 J g−1, −0.43%, 0.03% and −0.11%, respectively. This report shows that near infrared spectroscopy is quite successful in predicting the higher heating value, and is usable with screening for the determination of fixed carbon and volatile matter. For ash content, the method is not recommended. The models should be able to predict the properties of bamboo samples which are suitable for achieving higher efficiency for the biomass conversion process.


2021 ◽  
Vol 271 ◽  
pp. 03067
Author(s):  
Xiaohong He ◽  
Zhihong Song ◽  
Haifei Shang ◽  
Silang Yang ◽  
Lujing Wu ◽  
...  

Currently, the laboratory diagnostic tests available for HIV-1 viral infection are mainly based on serological testing which relies on enzyme-linked immunosorbent assay (ELISA) for blood HIV antigen detection and reverse transcription polymerase chain reaction (RT-PCR) for HIV specific RNA sequence identification. However, these methods are expensive and time-consuming, and suffer from false positive and/or false negative results. Thus, there is an urgent need for developing a cost effective, rapid and accurate diagnostic method for HIV-1 infection. In order to reduce the barriers for effective diagnosis, a near-infrared spectroscopy (NIR) method was used to detect the HIV-1 virus in human serum, specifically, three absorption peaks with dose-dependent at 1582nm, 1810nm and 2363nm were found by multiple FBiPLSR test analysis for HIV-nano and HIV-EGFP, but not for MLV. Therefore, we recommend the use of 1582nm, 1810nm and 2363nm as the characteristic spectrum peak, for early screening and rapid diagnosis of serum HIV.


2018 ◽  
Vol 28 (3) ◽  
pp. 245-252 ◽  
Author(s):  
Maythem Al-Amery ◽  
Robert L. Geneve ◽  
Mauricio F. Sanches ◽  
Paul R. Armstrong ◽  
Elizabeth B. Maghirang ◽  
...  

AbstractRapid, non-destructive methods for measuring seed germination and vigour are valuable. Standard germination and seed vigour were determined using 81 soybean seed lots. From these data, seed lots were separated into high and low germinating seed lots as well as high, medium and low vigour seed lots. Near-infrared spectra (950–1650 nm) were collected for training and validation samples for each seed category and used to create partial least squares (PLS) prediction models. For both germination and vigour, qualitative models provided better discrimination of high and low performing seed lots compared with quantitative models. The qualitative germination prediction models correctly identified low and high germination seed lots with an accuracy between 85.7 and 89.7%. For seed vigour, qualitative predictions for the 3-category (low, medium and high vigour) models could not adequately separate high and medium vigour seeds. However, the 2-category (low, medium plus high vigour) prediction models could correctly identify low vigour seed lots between 80 and 100% and the medium plus high vigour seed lots between 96.3 and 96.6%. To our knowledge, the current study is the first to provide near-infrared spectroscopy (NIRS)-based predictive models using agronomically meaningful cut-offs for standard germination and vigour on a commercial scale using over 80 seed lots.


Sign in / Sign up

Export Citation Format

Share Document