scholarly journals Water quality assessment of a tropical river using water quality index (WQI), multivariate statistical techniques and GIS

2019 ◽  
Vol 9 (7) ◽  
Author(s):  
Sanjoy Shil ◽  
Umesh Kumar Singh ◽  
Pankaj Mehta

Abstract Mahananda River is an important river in India and Bangladesh, as the people of both the countries use the water extensively, without sufficient and reliable information about water qualities and pollution status. The purpose of this study is to evaluate the water quality of the river and to analyse the suitability for drinking, agricultural and industrial uses. This is why this study on the Mahananda River is extremely important for the region. For this study, samples from fourteen sampling stations were collected in pre-monsoon and post-monsoon seasons in 2016 and water quality index (WQI), agriculture and industry-related indices were computed. WQI values designated two sampling stations out of fourteen sampling stations as ‘very bad’ category and another two sampling stations as ‘bad’ category. The pH values of some sampling stations slightly exceeded the upper permissible limit. USSL diagram analysis classified two samples of pre-monsoon season in C2S1 category which indicates a medium salinity and low sodium water. Magnesium hazard values of four sampling stations are above 50% suggesting not suitable for irrigation. However, some indices like sodium per cent, residual sodium carbonate and residual sodium bicarbonate, Kelly’s index, permeability index and potential salinity allow the water for use in irrigation purposes. Langelier Saturation Index and aggressive index values designate the water as moderately aggressive or non-aggressive. Ryznar Stability Index values designate the water as ‘aggressive’ or ‘very aggressive’ indicating unsuitability for industrial uses. Sampling stations S-1, S-2, S-8 and S-14 need special attention.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
David de Andrade Costa ◽  
José Paulo Soares de Azevedo ◽  
Marco Aurélio dos Santos ◽  
Rafaela dos Santos Facchetti Vinhaes Assump

AbstractFifty-four water samples were collected between July and December 2019 at nine monitoring stations and fifteen parameters were analysed to provide an updated diagnosis of the Piabanha River water quality. Further, forty years of monitoring were analysed, including government data and previous research projects. A georeferenced database was also built containing water management data. The Water Quality Index from the National Sanitation Foundation (WQINSF) was calculated using two datasets and showed an improvement in overall water quality, despite still presenting systematic violations to Brazilian standards. Principal components analysis (PCA) showed the most contributing parameters to water quality and enabled its association with the main pollution sources identified in the geodatabase. PCA showed that sewage discharge is still the main pollution source. The cluster analysis (CA) made possible to recommend the monitoring network optimization, thereby enabling the expansion of the monitoring to other rivers. Finally, the diagnosis provided by this research establishes the first step towards the Framing of water resources according to their intended uses, as established by the Brazilian National Water Resources Policy.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 905
Author(s):  
Naseem Akhtar ◽  
Muhammad Izzuddin Syakir Ishak ◽  
Mardiana Idayu Ahmad ◽  
Khalid Umar ◽  
Mohamad Shaiful Md Yusuff ◽  
...  

Human activities continue to affect our water quality; it remains a major problem worldwide (particularly concerning freshwater and human consumption). A critical water quality index (WQI) method has been used to determine the overall water quality status of surface water and groundwater systems globally since the 1960s. WQI follows four steps: parameter selection, sub-indices, establishing weights, and final index aggregation, which are addressed in this review. However, the WQI method is a prolonged process and applied to specific water quality parameters, i.e., water consumption (particular area and time) and other purposes. Therefore, this review discusses the WQI method in simple steps, for water quality assessment, based on two multi-criteria decision-making (MCDM) methods: (1) analytical hierarchical process (AHP); and (2) measuring attractiveness by a categorically based evaluation technique (MACBETH). MCDM methods can facilitate easy calculations, with less effort and great accuracy. Moreover, the uncertainty and eclipsing problems are also discussed—a challenge at every step of WQI development, particularly for parameter selection and establishing weights. This review will help provide water management authorities with useful knowledge pertaining to water usage or modification of existing indicators globally, and contribute to future WQI planning and studies for drinking, irrigation, domestic, and industrial purposes.


2015 ◽  
Vol 50 (3) ◽  
pp. 287-296 ◽  
Author(s):  
Abdulrasoul Al-Omran ◽  
Fahad Al-Barakah ◽  
Abdullah Altuquq ◽  
Anwar Aly ◽  
Mahmoud Nadeem

One hundred and eighty drinking water samples were collected from five zones of Riyadh governorate including Riyadh main zone, Ulia, Nassim, Shifa, and Badiah zones. The water was collected from the main water network and underground and upper household tanks in each zone. The water quality was found to be acceptable for drinking with respect to chemical characteristics; however, analyses exhibited some microbial contamination. The water quality index (WQI) is a mathematical method used to facilitate water quality explanation. The WQI was calculated using several physico-chemical and microbial parameters. The results showed that more than 88% of Riyadh main zone, 91% of Ulia, 97% of Nassim, 88% of Shifa, and 100% of Badiah waters zones were considered excellent for drinking (class I). The remaining waters were considered unsuitable for drinking (class V) due to microbial contamination.


Sign in / Sign up

Export Citation Format

Share Document