scholarly journals Experimental investigation of gas–oil–water phase flow in vertical pipes: influence of gas injection on the total pressure gradient

2019 ◽  
Vol 9 (4) ◽  
pp. 3071-3078 ◽  
Author(s):  
Tarek Ganat ◽  
Meftah Hrairi ◽  
Shiferaw Regassa
Author(s):  
Yingying Wang ◽  
Chunsheng Wang ◽  
Qiji Sun ◽  
Yuling Lv

Abstract The mal-distribution of gas-oil-water multi-phase flow in parallel petroleum processing pipelines can directly affect the working condition of the separators. In this paper, the influence of different factors on the flow distribution and the characteristics of gas-oil-water distribution in parallel pipelines was investigated by three-dimensional CFD numerical simulation. Firstly, four different simulation models are established based on different arrangement types of parallel pipelines. The simulation results show that the distribution of gas-oil-water flow in the radial entry symmetrical two-stage pipe-laying simulation model was the most uniform among the four simulation models. Then, four radial entry symmetrical two-stage pipe-laying simulation models with different distance between branch pipes were establish. From the simulated results, it can be found that the distance has no effect on the distribution of gas-oil-water flow in each branch pipe, but great influence on distribution of flow rate in each branch pipe. Finally, the influence of the inlet flow characters on the flow distribution is investigated. It can be found that the “bias flow” phenomenon of the parallel pipelines decreasing with the increase of the inlet flow velocity, the gas content of inlet flow and the water content of inlet liquid.


SPE Journal ◽  
2013 ◽  
Vol 18 (05) ◽  
pp. 841-850 ◽  
Author(s):  
H.. Shahverdi ◽  
M.. Sohrabi

Summary Water-alternating-gas (WAG) injection in waterflooded reservoirs can increase oil recovery and extend the life of these reservoirs. Reliable reservoir simulations are needed to predict the performance of WAG injection before field implementation. This requires accurate sets of relative permeability (kr) and capillary pressure (Pc) functions for each fluid phase, in a three-phase-flow regime. The WAG process also involves another major complication, hysteresis, which is caused by flow reversal happening during WAG injection. Hysteresis is one of the most important phenomena manipulating the performance of WAG injection, and hence, it has to be carefully accounted for. In this study, we have benefited from the results of a series of coreflood experiments that we have been performing since 1997 as a part of the Characterization of Three-Phase Flow and WAG Injection JIP (joint industry project) at Heriot-Watt University. In particular, we focus on a WAG experiment carried out on a water-wet core to obtain three-phase relative permeability values for oil, water, and gas. The relative permeabilities exhibit significant and irreversible hysteresis for oil, water, and gas. The observed hysteresis, which is a result of the cyclic injection of water and gas during WAG injection, is not predicted by the existing hysteresis models. We present a new three-phase relative permeability model coupled with hysteresis effects for the modeling of the observed cycle-dependent relative permeabilities taking place during WAG injection. The approach has been successfully tested and verified with measured three-phase relative permeability values obtained from a WAG experiment. In line with our laboratory observations, the new model predicts the reduction of the gas relative permeability during consecutive water-and-gas-injection cycles as well as the increase in oil relative permeability happening in consecutive water-injection cycles.


Author(s):  
Jose Zaghloul ◽  
Michael Adewumi ◽  
M. Thaddeus Ityokumbul

The transport of unprocessed gas streams in production and gathering pipelines is becoming more attractive for new developments, particularly those is less friendly enviroments such as deep offshore locations. Transporting gas, oil, and water together from wells in satellite fields to existing processing facilities reduces the investments required for expanding production. However, engineers often face several problems when designing these systems. These problems include reduced flow capacity, corrosion, emulsion, asphaltene or wax deposition, and hydrate formation. Engineers need a tool to understand how the fluids travel together, quantify the flow reduction in the pipe, and determine where, how much, and the type of liquid that would from in a pipe. The present work provides a fundamental understanding of the thermodynamics and hydrodynamic mechanisms of this type of flow. We present a model that couples complex hydrodynamic and thermodynamic models for describing the behavior of fluids traveling in near-horizontal pipes. The model incorporates: • A hydrodynamic formulation for three-phase flow in pipes. • A thermodynamic model capable of performing two-phase and three-phase flow calculations in an accurate, fast and reliable manner. • A new theoretical approach for determining flow pattern transitions in three-phase (gas-oil-water) flow, and closure models that effectively handle different three-phase flow patterns and their transitions. The unified two-fluid model developed herein is demonstrated to be capable of handling systems exhibiting two-phase (gas-water and gas-oil) and three-phase (gas-oil-water) flow. Model predictions were compared against field and experimental data with excellent matches. The hydrodynamic model allows: 1) the determination of flow reduction due to the condensation of liquid(s) in the pipe, 2) assessment of the potential for forming substances that might affect the integrity of the pipe, and 3) evaluation of the possible measures for improving the deliverability of the pipeline.


2012 ◽  
Vol 30 (14) ◽  
pp. 1508-1522
Author(s):  
A. Keshavarz ◽  
H. Vatanparast ◽  
M. Zargar ◽  
A. Kalantari Asl ◽  
M. Haghighi

2011 ◽  
Vol 402 ◽  
pp. 816-819
Author(s):  
Hai Qin Wang ◽  
Yong Wang ◽  
Lei Zhang ◽  
Jin Hai Gong ◽  
Zhen Yu Wang

The experiments were conducted in a horizontal multiphase flow test loop (50mm inner diameter, 40m long) and the cross-correlation technology was used for the study of the characteristics of the interfacial wave velocity about two types of annular flow regimes (AN║DO/W and AN║DW/O) for gas-oil-water three-phase flow. The results show that the interfacial wave velocity on the liquid film of AN║DO/W flow pattern and AN║DW/O flow pattern all increases with the increase of gas superficial velocity and liquid superficial velocity on the condition of fixed ratio of oil and water flow rates, but the difference is that the increase is a linear monotonic increase for AN║DO/W flow pattern and a non-linear increase for AN║DW/O flow pattern, and the liquid superficial velocity makes a larger contribution than the gas superficial velocity. The interfacial wave velocity also increases with the increase of input water cut in liquid at different gas superficial velocities under the conditions of liquid superficial velocity fixed.


Sign in / Sign up

Export Citation Format

Share Document