Gas-Oil-Water Production and Water-Gas Injection Forecasts in Williston Basin

2014 ◽  
Vol 3 (3) ◽  
pp. 119
Author(s):  
Kegang Ling ◽  
Jun He ◽  
Peng Pei
2021 ◽  
Author(s):  
Mahmoud Abd El-Fattah ◽  
Ahmed Moustafa Fahmy ◽  
Hamed Wahaibi ◽  
Abdullah Shibli ◽  
Khaled Zuhaimi

Abstract One of the largest oil fields in the GCC was developed in the 1960's. The field was initially produced under natural depletion supplemented by gas injection. The high offtake rates led to a rapid displacement of the gas/oil contact; thus, the field has now been suffering from early gas/water breakthrough and uneven fluid influx along with the horizontal wells. The reservoir has been on production for more than 50 years. Water/gas breakthrough from fractures being the major challenge which negatively affects wells oil production rates. Applying technology which can manage water/gas breakthrough in a cost-effective manner whilst allowing increased oil production was a key goal from operators in this field. Passive Inflow Control Devices (ICD) were introduced to the global oil and gas market in mid/late-1990's, and the first generation of Autonomous ICD (AICD) that can help reduce more unwanted gas or water was first installed in 2007. ICD's successfully demonstrated that they could delay the gas and/or water breakthrough within horizontal wells, but they could not choke gas when the coning/gas-breakthrough occurred and along with limited abilities to stop unwanted water production. To help solve this problem, the Autonomous Inflow Control Devices (AICD-RCP) with a movable disc was introduced to the market and demonstrated reduction of gas production by 20-30% with similar gains in oil production[1]. In this paper, the newest generation of Autonomous Inflow Control Valve (AICV) technology is presented. The AICV technology has a movable piston that can close and reduce the unwanted gas and water production by up to 95%[2]. The application of AICVs discussed herein were deployed within several wells which had extremely high Gas Oil Ratio (GOR) and low oil production. The novel AICV technology can differentiate between fluid types based on viscosity and density. When undesired fluid (gas and/or water) starts to be produced, the AICV chokes the valve flow area gradually until completely shutting off, all without well intervention[3]. Well production performances are documenting the benefits of installing AICV completions. The results demonstrate the AICVs closing the zones with high gas production and favoring oil-rich zones. Majority of evaluated wells demonstrated clearly that the extremely high GOR was reduced; some wells have returned to solution GOR for more than two years, and at the same time, the daily oil production is increased.


Fuel ◽  
2022 ◽  
Vol 309 ◽  
pp. 122150
Author(s):  
Sina Foroudi ◽  
Alireza Gharavi ◽  
Mobeen Fatemi

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1998
Author(s):  
Haishan Luo ◽  
Kishore K. Mohanty

Unlocking oil from tight reservoirs remains a challenging task, as the existence of fractures and oil-wet rock surfaces tends to make the recovery uneconomic. Injecting a gas in the form of a foam is considered a feasible technique in such reservoirs for providing conformance control and reducing gas-oil interfacial tension (IFT) that allows the injected fluids to enter the rock matrix. This paper presents a modeling strategy that aims to understand the behavior of near-miscible foam injection and to find the optimal strategy to oil recovery depending on the reservoir pressure and gas availability. Corefloods with foam injection following gas injection into a fractured rock were simulated and history matched using a compositional commercial simulator. The simulation results agreed with the experimental data with respect to both oil recovery and pressure gradient during both injection schedules. Additional simulations were carried out by increasing the foam strength and changing the injected gas composition. It was found that increasing foam strength or the proportion of ethane could boost oil production rate significantly. When injected gas gets miscible or near miscible, the foam model would face serious challenges, as gas and oil phases could not be distinguished by the simulator, while they have essentially different effects on the presence and strength of foam in terms of modeling. We provide in-depth thoughts and discussions on potential ways to improve current foam models to account for miscible and near-miscible conditions.


2019 ◽  
Author(s):  
Chuang Zhao ◽  
Zhaojie Song ◽  
Yang Yao ◽  
Yunbo Li ◽  
Qiang Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document