scholarly journals Experimental investigation of the effect of Vitagnus plant extract on enhanced oil recovery process using interfacial tension (IFT) reduction and wettability alteration mechanisms

2020 ◽  
Vol 10 (7) ◽  
pp. 2895-2905 ◽  
Author(s):  
Seyed Ramin Mousavi Dashtaki ◽  
Jagar A. Ali ◽  
Abbas Khaksar Manshad ◽  
Iman Nowrouzi ◽  
Amir H. Mohammadi ◽  
...  
2021 ◽  
Author(s):  
Rini Setiati ◽  
Muhammad Taufiq Fathaddin ◽  
Aqlyna Fatahanissa

Microemulsion is the main parameter that determines the performance of a surfactant injection system. According to Myers, there are four main mechanisms in the enhanced oil recovery (EOR) surfactant injection process, namely interface tension between oil and surfactant, emulsification, decreased interfacial tension and wettability. In the EOR process, the three-phase regions can be classified as type I, upper-phase emulsion, type II, lower-phase emulsion and type III, middle-phase microemulsion. In the middle-phase emulsion, some of the surfactant grains blend with part of the oil phase so that the interfacial tension in the area is reduced. The decrease in interface tension results in the oil being more mobile to produce. Thus, microemulsion is an important parameter in the enhanced oil recovery process.


Fuel ◽  
2020 ◽  
Vol 263 ◽  
pp. 116599 ◽  
Author(s):  
Ghasem Zargar ◽  
Tooraj Arabpour ◽  
Abbas Khaksar Manshad ◽  
Jagar A. Ali ◽  
S. Mohammad Sajadi ◽  
...  

2016 ◽  
Vol 31 (1) ◽  
pp. 188-197 ◽  
Author(s):  
Rong Li ◽  
Peixue Jiang ◽  
Cheng Gao ◽  
Feng Huang ◽  
Ruina Xu ◽  
...  

REAKTOR ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 65-73
Author(s):  
Agam Duma Kalista Wibowo ◽  
Pina Tiani ◽  
Lisa Aditya ◽  
Aniek Sri Handayani ◽  
Marcelinus Christwardana

Surfactants for enhanced oil recovery are generally made from non-renewable petroleum sulfonates and their prices are relatively expensive, so it is necessary to synthesis the bio-based surfactants that are renewable and ecofriendly. The surfactant solution can reduce the interfacial tension (IFT) between oil and water while vinyl acetate monomer has an ability to increase the viscosity as a mobility control. Therefore, polymeric surfactant has both combination properties in reducing the oil/water IFT and increasing the viscosity of the aqueous solution simultaneously. Based on the study, the Critical Micelle Concentration (CMC) of Polymeric Surfactant was at 0.5% concentration with an IFT of 7.72x10-2 mN/m. The best mole ratio of methyl ester sulfonate to vinyl acetate for polymeric surfactant synthesis was 1:0.5 with an IFT of 6.7x10-3 mN/m. Characterization of the product using FTIR and HNMR has proven the creation of polymeric surfactant. Based on the wettability alteration study, it confirmed that the product has an ability to alter from the initial oil-wet to water-wet quartz surface. In conclusion, the polymeric surfactant has ultralow IFT and could be an alternative surfactant for chemical flooding because the IFT value met with the required standard for chemical flooding ranges from 10-2 to 10-3 mN/m.Keywords: Enhanced Oil recovery, Interfacial Tension, Methyl Ester Sulfonate, Polymeric surfactant, vinyl acetate


Author(s):  
Mehrdad Sepehri ◽  
Babak Moradi ◽  
Abolghasem Emamzadeh ◽  
Amir H. Mohammadi

Nowadays, nanotechnology has become a very attractive subject in Enhanced Oil Recovery (EOR) researches. In the current study, a carbonate system has been selected and first the effects of nanoparticles on the rock and fluid properties have been experimentally investigated and then the simulation and numerical modeling of the nanofluid injection for enhanced oil recovery process have been studied. After nanofluid treatment, experimental results have shown wettability alteration. A two-phase flow mathematical model and a numerical simulator considering wettability alteration have been developed. The numerical simulation results show that wettability alteration from oil-wet to water-wet due to presence of nanoparticles can lead to 8–10% increase in recovery factor in comparison with normal water flooding. Different sensitivity analyses and injection scenarios have been considered and assessed. Using numerical modeling, wettability alteration process and formation damage caused by entrainment and entrapment of nanoparticles in porous media have been proved. Finally, the net rate of nanoparticles’ loss in porous media has been investigated.


2017 ◽  
Vol 248 ◽  
pp. 153-162 ◽  
Author(s):  
Abbas Khaksar Manshad ◽  
Mansooreh Rezaei ◽  
Siamak Moradi ◽  
Iman Nowrouzi ◽  
Amir H. Mohammadi

Sign in / Sign up

Export Citation Format

Share Document