scholarly journals Load torque analysis and compensation device design for low power drilling fluid continuous wave generator

2021 ◽  
Vol 11 (5) ◽  
pp. 2145-2156
Author(s):  
Jiafeng Wu ◽  
Jianming Jiang ◽  
Botao Zhou ◽  
Shuxing Zhao ◽  
Ning Han ◽  
...  

AbstractAs an advanced downhole instrument in drilling engineering, drilling fluid continuous wave generator (DFCWG) has great application prospects. The large load torque is one of the key problems that hinder the development of DFCWG. In this paper, based on the design theory of rotary valve and finite element method, the structure of rotary valve is designed and the load torque characteristics is analyzed and points out that the load torque has strong alternating characteristics. It is pointed out that the load torque has the characteristics of strong alternating. According to the characteristics of the load torque, the "fluid-magnetic" collaborative compensation method is proposed. The load compensation turbine and magnetic compensation device are used to compensate the DC and AC components of the load torque respectively, and the load compensation device is designed. The rationality of the design of the load compensation device is verified by simulation. Finally, the comprehensive compensation effect is analyzed by the finite element method. According to the analysis results, the "fluid-magnetic" collaborative compensation method can effectively reduce the load torque. The research results can provide technical support for DFCWG design.

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 66846-66855
Author(s):  
Jiafeng Wu ◽  
Botao Zhou ◽  
Ning Han ◽  
Jianming Jiang ◽  
Shuxing Zhao ◽  
...  

2020 ◽  
Vol 65 (1) ◽  
pp. 51-58
Author(s):  
Sava Ianici

The paper presents the results of research on the study of the elastic deformation of a flexible wheel from a double harmonic transmission, under the action of a cam wave generator. Knowing exactly how the flexible wheel is deformed is important in correctly establishing the geometric parameters of the wheels teeth, allowing a better understanding and appreciation of the specific conditions of harmonic gearings in the two stages of the transmission. The veracity of the results of this theoretical study on the calculation of elastic deformations and displacements of points located on the average fiber of the flexible wheel was subsequently verified and confirmed by numerical simulation of the flexible wheel, in the elastic field, using the finite element method from SolidWorks Simulation.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Lingtan Zhang ◽  
Yue Shen ◽  
Long Wang ◽  
Jia Jia ◽  
Lingzhi Wei

The rotary valve speed control, seriously affected by the nonlinear characteristic of rotary valve load torque, affects the generation of drilling fluid pressure phase shift keying (PSK) signal and its quality. The calculation model feedforward of the load torque acts on the speed control system and enables the motor voltage to change according to the law of calculation model, and the linearization correction of the speed system is performed. Additionally, the flow measurement is introduced into the calculation model of the load torque to track the load torque change with the flow, suppressing the influence of large changes in flow rate on open-loop control of rotary valve speed. The closed-loop proportional-integral-derivative (PID) control is formed by negative feedback of speed, and the PID parameter value rule is established based on the rapid decay control of transient component in the rotary valve speed step response, which speeds up the tracking of the rotary valve speed following the control voltage pulse and reduces the distortion of the drilling fluid pressure PSK signal, increasing the frequency of the drilling fluid pressure carrier and improving the transmission rate of downhole information. Simulink simulation indicates that the closed-loop PID control of rotary valve speed can track the change of control voltage pulse quickly and strongly suppress the interference influences from flow measurement error and load torque calculation model deviation.


Author(s):  
J Fang ◽  
P Jia ◽  
W Liu

Using computational fluid dynamics method, dynamic mesh technology, and the dynamic equation of the moving elements, the performance of the reciprocating continuous wave generator is simulated. The influence of the non-Newtonian property of the drilling fluid on the pressure signal is analysed, and the results show that the influence of the non-Newtonian property on the pressure loss at the orifice is small due to the high Reynolds number. The influence of the motion pattern and the exciting frequency of the pilot valve on the dynamic performance of the generator is also analysed, and the results show that: the signal generated from the sinusoidal motion pattern of the pilot valve changes mildly, which is beneficial to the continuous wave generation; during the main poppet opening, the relief valve is at the position of minimum lift, which results in the slowly decreasing pressure, and the rate of signal generation is decreased.


Nanoscale ◽  
2019 ◽  
Vol 11 (43) ◽  
pp. 20868-20875 ◽  
Author(s):  
Junxiong Guo ◽  
Yu Liu ◽  
Yuan Lin ◽  
Yu Tian ◽  
Jinxing Zhang ◽  
...  

We propose a graphene plasmonic infrared photodetector tuned by ferroelectric domains and investigate the interfacial effect using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document