Correlation between the California Bearing Ratio (CBR) and Unconfined Compressive Strength (UCS) of Stabilized Sand-Cement of the Niger Delta

2016 ◽  
Vol 3 (3) ◽  
pp. 7-13 ◽  
Author(s):  
D.B Eme ◽  
◽  
T.C Nwofor ◽  
S Sule
2019 ◽  
Vol 8 (2) ◽  
pp. 6252-6257

Clayey soils are considered as the weakest subgrade soil from civil engineering point of view under moist condition. These soils attract and absorb water and loses their strength. Because of this reason certain inherent properties of these clayey soils need modification for their bulk use in construction of highways, embankments etc. Recently, many synthetic fibres have emerged to strengthen soft soils. Synthetic fibres are low-cost materials, hydrophobic and chemically inert in nature which does not allow the absorption or reaction with soil moisture. The inclusion of synthetic fibres provides reinforcement to the soil and use of lime as a soil stabilizer in BC soil cut down the plasticity index and also increase its strength. For this an extensive laboratory test program was conducted to analyse the variation geotechnical properties of soil by changing the percentage of recron fibre at an optimum dose of lime. The laboratory tests include Atterberg Limit Test, Modified Proctor Test, Unconfined Compressive Strength Test and California Bearing Ratio Test. To conduct different tests on soil sample the proportion of lime is kept fixed and proportion of polyester recron fibre is varied from 0% to 1% by dry weight of soil sample for different lengths of fibre(6 mm, 12 mm & 18 mm separately). Optimum dose of lime is find out by plasticity index of BC soil mixed with varying percentages of lime (4%, 6%, 8% and 10%). Results of the experiments shows that with the increase in the appropriate percentage in recron fibre the Unconfined Compressive Strength and California Bearing Ratio increases. On increasing the length of Recron Fibre, the Unconfined Compressive Strength and California Bearing Ratio also increases. Combination of lime and recron fibre in BC soil give higher CBR value. Therefore it can be used in the improvement of Clayey Soil Subgrade in pavement design and in the construction of embankements.


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Anigilaje B Salahudeen ◽  
Ja’afar A Sadeeq

The study investigate the suitability of subgrade soil in Baure Local Government Area of Kastina State Nigeria for road construction. The strength properties of the  subgrade was improved using lime and cement. Several analysis including the particle size distribution, specific gravity, Atterberg limits, compaction characteristics, unconfined compressive strength and California bearing ratio tests were performed on natural and lime/cement treated soil samples in accordance with BS 1377 (1990) and BS 1924 (1990) respectively. Soil specimens were prepared by mixing the soil with lime and cement in steps of 0, 3, 6, and 9% by weight of dry soil in several percentage combinations. The Atterberg limits of the weak subgrade soils improved having a minimum plasticity index value of 5.70 % at 3%Lime/6%Cement contents. The maximum dry density (MDD) values obtained showed a significant improvement having a peak value of 1.66 kN/m3 at 9%Lime/9%Cement contents. Similarly, a minimum value of 18.50 % was observed for optimum moisture content at 9%Lime/9%Cement contents which is a desirable reduction from a value of 25.00 % for the natural soil. The unconfined compressive test value increased from 167.30 kN/m2 for the natural soil to 446.77 kN/m2 at 9%Lime/9%Cement contents 28 days curing period. Likewise, the soaked California bearing ratio values increased from 2.90 % for the natural soil to 83.90 % at 9%Lime/9%Cement contents. Generally, there were improvements in the engineering properties of the weak subgrade soil when treated with lime and cement. However, the peak UCS value of 446.77 kN/m2 fails to meet the recommended UCS value of 1710 KN/m2 specified by TRRL (1977) as a criterion for adequate stabilization using Ordinary Portland Cement.            Keywords: Weak subgrade soil, Lime, Cement, Atterberg limits, Maximum dry density, Optimum moisture content, Unconfined compressive strength, California bearing ratio


2020 ◽  
Vol 26 (7) ◽  
pp. 145-157
Author(s):  
Zozk Kawa Abdalqadir ◽  
Nihad Bahaaldeen Salih ◽  
Soran Jabbar Hama Salih

The clayey soils have the capability to swell and shrink with the variation in moisture content. Soil stabilization is a well-known technique, which is implemented to improve the geotechnical properties of soils. The massive quantities of waste materials are resulting from modern industry methods create disposal hazards in addition to environmental problems. The steel industry has a waste that can be used with low strength and weak engineering properties soils. This study is carried out to evaluate the effect of steel slag (SS) as a by-product of the geotechnical properties of clayey soil. A series of laboratory tests were conducted on natural and stabilized soils. SS was added by 0, 2.5, 5, 10, 15, and 20% to the soil. The conducted tests are consistency limits, specific gravity, hydrometer analysis, modified Proctor compaction, swelling pressure, swelling percent, unconfined compressive strength, and California Bearing Ratio (Soaked CBR). The results showed that the values of liquid limit, plasticity index, optimum moisture content, swelling pressure, and swelling percent were decreased when stabilized the soil. However, the values of maximum dry density, unconfined compressive strength, and California bearing ratio were increased with the addition of steel slag with various percentages to the clayey soil samples. The steel slag was found to be successfully improving the geotechnical properties of clayey soils.


2017 ◽  
Vol 5 (2) ◽  
pp. 117-122
Author(s):  
Evi Meilisa Adhanty ◽  
Rida Respati ◽  
Norseta Ajie Saputra

Land is the foundation for construction. Foundation is the lowest part of a construction, serves to channel the load directly from the construction structure to the soil layer at underneath it. Soils that have bad properties are very unfavorable if used for something construction, especially for highway pavement. The way to increase the carrying capacity of clay soil is to do soil stabilization efforts, that is, using roadbooster as a stabilizing chemical and is expected to improve the nature of the clay and meets the requirements for road pavement materials. In this study will stabilization of the clay soil of Tumbang Rungan Village Palangka Raya with the main parameters which is used as a research reference, namely California Bearing Ratio (CBR) immersion and Unconfined Compressive Strength (UCS). Based on the results of testing the clay soil of Tumbang Rungan Village, Palangka Raya, the data were obtained: Original ground immersion CBR 7.89%, CBR immersion 0% roadbooster 76%, CBR 4% immersion roadbooster 40.85%, CBR immersion 8% roadbooster 27.08%, UCS original soil 0.56 kg / cm2, UCS 0% roadbooster 7.30 kg / cm2, UCS 4% roadbooster 7.40 kg / cm2, and UCS 8% roadbooster 8.30 kg / cm2. From the CBR data, you can see the value The highest CBR is when mixing 0% roadbooster or without additional roadbooster, while the highest UCS value lies in mixing 8% roadbooster.


2014 ◽  
Vol 22 (4) ◽  
pp. 35-44 ◽  
Author(s):  
Sujeet Kumar ◽  
Rakesh Kumar Dutta ◽  
Bijayananda Mohanty

Abstract Engineering properties such as compaction, unconfined compressive strength, consistency limits, percentage swell, free swell index, the California bearing ratio and the consolidation of bentonite stabilized with lime and phosphogypsum are presented in this paper. The content of the lime and phosphogypsum varied from 0 to 10 %. The results reveal that the dry unit weight and optimum moisture content of bentonite + 8 % lime increased with the addition of 8 % phosphogypsum. The percentage of swell increased and the free swell index decreased with the addition of 8 % phosphogypsum to the bentonite + 8 % lime mix. The unconfined compressive strength of the bentonite + 8 % lime increased with the addition of 8 % phosphogypsum as well as an increase in the curing period up to 14 days. The liquid limit and plastic limit of the bentonite + 8 % lime increased, whereas the plasticity index remained constant with the addition of 8 % phosphogypsum. The California bearing ratio, modulus of subgrade reaction, and secant modulus increased for the bentonite stabilized with lime and phosphogypsum. The coefficient of the consolidation of the bentonite increased with the addition of 8 % lime and no change with the addition of 8 % phosphogypsum.


Author(s):  
C. C. Agoha ◽  
A. I. Opara ◽  
O. C. Okeke ◽  
C. N. Okereke ◽  
C. N. Onwubuariri ◽  
...  

Abstract3D geomechanical characterization of "Fuja" field reservoirs, Niger Delta, was carried out to evaluate the mechanical properties of the reservoir rock which will assist in reducing drilling and exploitation challenges faced by operators. Bulk density, sonic, and gamma-ray logs from four wells were integrated with 3D seismic data and core data from the area to estimate the elastic and inelastic rock properties, pore pressure, total vertical stress, as well as maximum and minimum horizontal stresses within the reservoirs from empirical equations, using Petrel and Microsoft Excel software. 3D geomechanical models of these rock properties and cross-plots showing the relationship between the elastic and inelastic properties were also generated. From the results, Young's modulus, bulk modulus, bulk compressibility, shear modulus, Poisson's ratio, and unconfined compressive strength recorded average values of 5.11 GPa, 5.10 GPa, 0.023 GPa−1$$,$$ , 2.39 GPa, 0.39, and 39.0 GPa, respectively, in the sand, and 6.08 GPa, 6.09 Gpa, 0.016 GPa−1 2.84 GPa, 0.42, and 42.3 GPa, respectively, in shale, implying that the sand is less elastic and ductile and will deform before the shale under similar stress conditions. Results also revealed mean pore pressures of 13,248 psi and 15,220 psi in sand and shale units, respectively, mean total vertical stress of 28,193 psi, mean maximum horizontal stress of 26,237 psi, and mean minimum horizontal stress of 21,532 psi. From the geomechanical models, the rock elastic and inelastic parameters revealed higher values around the northeastern and parts of the eastern and western portions of the reservoir implying that mechanical rock deformation will be minimal in these sections of the field compared to other sections during drilling and post-drilling activities. The generated cross-plots indicate that a relationship exists between the elastic rock properties and unconfined compressive strength. Stress estimations within the reservoirs in relation to the obtained elastic and rock strength parameters show that the reservoirs are stable. These results will be invaluable in mitigating exploration and exploitation challenges.


2013 ◽  
Vol 438-439 ◽  
pp. 644-648 ◽  
Author(s):  
Zhe Jiang Chen ◽  
Jin Shun Xue ◽  
Fan Cao ◽  
Ying Jun Jiang

In order to improving the performance of Cement-stabilized Macadam (CSM), analyzing the influences of its composition structure on performance, and then putting forward the gradation design principles and strong interlocked framework dense gradation (SISDG), laboratory test was adopted to verify its road performance. Result shows that CSM has the feature of the amount of aggregate above 9.5 mm, below 4.75 mm and 0.075 mm are more, while the amount of aggregate 4.75-9.5 mm is less, and the California Bearing Ratio (CBR) value of mineral aggregate with SISDG is increased by 8~14% comparing with mineral aggregate with the framework dense-graded (DSDG) presented in Design Specifications of Highway Asphalt Pavement (JTG D50-2006) gradation. Compared with CSM with DSDG, 28d unconfined compressive strength (UCS), ultimate UCS and splitting strength of CSM with SISDG are respectively increased by 6~12%, 8~20% and 8~15%.


2017 ◽  
Vol 12 (1) ◽  
pp. 19-28
Author(s):  
Olumuyiwa S. Aderinola ◽  
Emeka S. Nnochiri

Abstract This study assesses stabilizing lateritic soil using Terrasil solution. Preliminary tests were carried out on six natural soil samples from three borrow pit locations-two soil samples from a particular borrow pit location, for the purpose of identification and classification. Soil samples 1 and 2 from borrow pit 3 were found to be poor, hence, needed stabilization. While the other four samples from borrow pits 1 and 2 were found to be good enough. Engineering property tests such as California Bearing Ratio (CBR), Unconfined Compressive Strength (UCS) and Compaction tests were performed on both the natural soil samples and the stabilized lateritic soil samples which were stabilized by adding terrasil solution in percentages ranging from 0% to 16% at 2% interval. The results showed that the addition of terrasil solution enhanced the strength of the two soil samples from borrow pit 3. For soil sample 1, the unsoaked CBR values increased from 8.4% at 0% to optimum value of 30.3% at 12% terrasil solution, while for soil sample 2, the unsoaked CBR values increased from 6.2% to optimum value of 32.0% at 12% terrasil solution. It was therefore concluded that the terrasil solution serves as a cheap and effective stabilizing agent for poor soil.


Sign in / Sign up

Export Citation Format

Share Document