scholarly journals Tight oil reservoir production characteristics developed by CO2 huff ‘n’ puff under well pattern conditions

Author(s):  
Zhizeng Xia ◽  
Xuewu Wang ◽  
Rui Xu ◽  
Weiwei Ren

AbstractTight oil reservoirs have poor physical properties, and the problems including rapid oil rate decline and low oil recovery degree are quite common after volume fracturing. To obtain a general understanding of tight oil reservoir production improvement by CO2 huff ‘n’ puff, the high-pressure physical properties of typical tight oil samples are measured. Combining the typical reservoir parameters, the production characteristics of the tight oil reservoir developed by the CO2 huff ‘n’ puff are numerically studied on the basis of highly fitted experimental results. The results show that: (1) during the natural depletion stage, the oil production rate decreases rapidly and the oil recovery degree is low because of the decrease in oil displacement energy and the increase in fluid seepage resistance. (2) CO2 huff ‘n’ puff can improve the development effect of tight oil reservoirs by supplementing reservoir energy and improving oil mobility, but the development effect gradually worsens with increasing cycle number. (3) The earlier the CO2 injection timing is, the better the development effect of the tight reservoir is, but the less sufficient natural energy utilization is. When carrying out CO2 stimulation, full use should be made of the natural energy, and the appropriate injection timing should be determined by comprehensively considering the formation-saturation pressure difference and oil production rate. The research results are helpful for strengthening the understanding of the production characteristics of tight oil reservoirs developed by CO2 huff ‘n’ puff.

2019 ◽  
Vol 7 (3) ◽  
pp. T625-T636
Author(s):  
Chunyan Fan ◽  
Xianglu Tang ◽  
Yuanyin Zhang ◽  
Yan Song ◽  
Zhenxue Jiang ◽  
...  

The pore structure controls the formation processes of tight oil reservoirs. It is meaningful to study the characteristics and origin of the pore structure of the tight oil reservoir. We have analyzed the pore structure of the tight oil reservoir by thin sections, scanning electron microscopy, and mercury intrusion porosimetry. We analyze the origin of the pore structure based on sedimentological, diagenetic, and tectonism processes. The porosity of the tight oil reservoirs is mainly approximately 2%–10%, and the permeability is mainly from 0.01 to 0.3 mD. The pores of the lacustrine tight oil reservoir can be classified into the primary pore and the secondary pore. The main pores are matrix micropores and clay intercrystalline pores, as well as a few dissolved pores. However, the primary residual intergranular pore has almost disappeared, leading to a poor connectivity with a general size between 20 and 50 μm. The pore throat is divided into three categories (type I, type II, and type III) according to the porosity, permeability, and throat size and distribution. We determine that the pore structure of the lacustrine tight oil reservoir is related to sedimentary, diagenetic processes, and later tectonic events. The compaction and cementation are the main factors, whereas the dissolution and tectonic events have minor effects.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1768-1771
Author(s):  
Hai Yang Qu ◽  
Zheng Ming Yang ◽  
Ting Hu

The permeability of tight oil reservoir is very low and general perm-plug method always has a big difference. The results can’t reach the test accuracy requirements. This paper measured 26 block rocks of Changqing tight oil reservoir and several typical tight oil reservoirs in CNPC with pulse decay new method. The result shows that the pulse decay permeability measured in the new method and steady-state Klinkenberg-corrected permeability have a good relationship. We drew a figure about the porosity and steady-state Klinkenberg-corrected permeability of these tight oil reservoirs. This research offers a technical support to the tight oil reservoirs about basic data permeability measurement.


Fractals ◽  
2019 ◽  
Vol 27 (01) ◽  
pp. 1940005 ◽  
Author(s):  
XIXIN WANG ◽  
JIAGEN HOU ◽  
YUMING LIU ◽  
PEIQIANG ZHAO ◽  
KE MA ◽  
...  

Lucaogou tight oil reservoir, located in the Junggar Basin, Northwest of China, is one of the typical tight oil reservoirs. Complex lithology leads to a wide pore size distribution (PSD), ranging from several nanometers to hundreds of micrometers. To better understand PSD and fractal features of Lucaogou tight oil reservoir, the experiment methods including scanning electron microscope (SEM), rate-controlled mercury injection (RMI) and pressure-controlled mercury injection (PMI) were performed on the six samples with different lithology. The results indicate that four types of pores exist in Lucaogou tight oil reservoir, including dissolution pores, clay dominated pores, microfractures and inter-granular pores. A combination of PMI and RMI was proposed to calculate the overall PSD of tight oil reservoirs, the overall pore radius of Lucaogou tight oil reservoir ranges from 3.6[Formula: see text]nm to 500[Formula: see text][Formula: see text]m. The fractal analysis was carried out based on the PMI data. Fractal dimension (Fd) values varied between 2.843 and 2.913 with a mean value of 2.88. Fd increases with a decrease of quartz content and an increase of clay mineral content. Samples from tight oil reservoirs with smaller average pore radius have stronger complexity of pore structure. Fractal dimension shows negative correlations with porosity and permeability. In addition, fractal characteristics of different tight reservoirs were compared and analyzed.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 4) ◽  
Author(s):  
Yong Qin ◽  
Haochuan Zhang ◽  
Chang Liu ◽  
Haifeng Ding ◽  
Tianyu Liu ◽  
...  

Abstract Field data indicates that oil production decline quickly and the oil recovery factor is low due to low permeability and insufficient energy in the tight oil reservoirs. Enhanced oil recovery (EOR) is required to improve the oil production rates of tight oil reservoirs. Gas flooding is a good means to supplement formation energy and improve oil recovery factor, especially for hydrocarbon gas flooding when CO2 is insufficient. Due to the permeability in some areas is too low, the injected gas cannot spread farther, and the EOR performance is poor. So multifractured horizontal well (MFHW) are usually used to assist gas injection in oilfields. At present, there are few studies on the optimization of hydrocarbon gas flooding parameters especially under the complex fracture network. This article uses unstructured grids to characterize the complex fracture networks, which more realistically shows the flow of formation fluids. Based on actual reservoir data, this paper establishes the numerical model of hydrocarbon gas flooding under complex fracture networks. The article conducts numerical simulation to analyze the effect of different parameters on well performance and provides the optimal injection and production parameters for hydrocarbon gas flooding in the M tight oil reservoir. The optimal injection-production well spacing of the M tight oil reservoir is about 800 to 900 m. The EOR performance is better when the total gas injection rates are about 0.45 HCPV, and gas injection rates of each well are about 3000 to 3500 m3/d (0.021 to 0.025 HCPV/a). The recommended injection-production ratio is about 1.1 to 1.2. This work can offer engineers guidance for hydrocarbon gas flooding of the MFHW with complex fracture networks. Hydrocarbon gas flooding in tight oil reservoirs can enhance oil recovery. The findings of this study can help for a better understanding of the influence of different parameters on hydrocarbon gas flooding in the M tight oil reservoir. This work can also offer engineers guidance for hydrocarbon gas flooding of the MFHW with complex fracture networks.


Author(s):  
Muhend Milad ◽  
Radzuan Junin ◽  
Akhmal Sidek ◽  
Abdulmohsin Imqam ◽  
Mohamed Tarhuni

2021 ◽  
pp. 1-24
Author(s):  
Xiaolong Chai ◽  
Leng Tian ◽  
Mengyuan Zhang ◽  
Hongzhi Shao ◽  
Jianguo Wang ◽  
...  

Abstract It is complex and obviously different for the production characteristics of CO2 water- alternating-gas flooding in tight reservoir and influenced by many factors. Therefore, the production prediction is a key matter of efficient development of CO2 water- alternating-gas to be solved in tight reservoirs. In order to solve this problem, in this paper, the production characteristics of CO2 water- alternating-gas flooding production well are analyzed and classified in tight oil reservoir of Block A as an example. On this basis, geological, fracturing operation and development factors are considered and the sensitivity of the influencing factors was carried out. The grey relation analysis(GRA) was used to screen the main influencing factors of poduction and establish the poduction evaluation model to realize the rapid prediction production. The results show that the wells of CO2 water- alternating-gas flooding in tight reservoirs can be divided into four types. The production is affected by permeability, reservoir thickness, amount of sand entering the ground, amount of liquid entering the ground, gas/water ratio, injection rate and injection pressure, and the main influencing factors of production are amount of sand entering the ground, reservoir thickness and amount of liquid entering the ground. The production of oil can be predicted quickly based on the relation between production and comprehensive evaluation factor of production. The average relative error between the predicted results and the actual predicted production is 8%, which proves the reliability and accuracy of this method.


2019 ◽  
Author(s):  
Zhaojie Song ◽  
Yuzhen Li ◽  
Yilei Song ◽  
Baojun Bai ◽  
Jirui Hou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document