scholarly journals Shallow and deep trap emission and luminescence quenching of TiO2 nanoparticles on Cu doping

2013 ◽  
Vol 4 (4) ◽  
pp. 499-506 ◽  
Author(s):  
Biswajit Choudhury ◽  
Munmun Dey ◽  
Amarjyoti Choudhury
2016 ◽  
Vol 27 (7) ◽  
pp. 7438-7447 ◽  
Author(s):  
Varadharajan Krishnakumar ◽  
Singaram Boobas ◽  
Jeyaram Jayaprakash ◽  
Mani Rajaboopathi ◽  
Bing Han ◽  
...  

2009 ◽  
Vol 129 (9) ◽  
pp. 620-626
Author(s):  
Kazuatsu Ito ◽  
Yuuki Sato ◽  
Motonari Adachi ◽  
Shinzo Yoshikado

2018 ◽  
Vol 31 (3) ◽  
pp. 20
Author(s):  
Sarmad M. M. Ali ◽  
Alia A.A. Shehab ◽  
Samir A. Maki

In this study, the ZnTe thin films were deposited on a glass substrate at a thickness of 400nm using vacuum evaporation technique (2×10-5mbar) at RT. Electrical conductivity and Hall effect measurements have been investigated as a function of variation of the doping ratios (3,5,7%) of the Cu element on the thin ZnTe films. The temperature range of (25-200°C) is to record the electrical conductivity values. The results of the films have two types of transport mechanisms of free carriers with two values of activation energy (Ea1, Ea2), expect 3% Cu. The activation energy (Ea1) increased from 29meV to 157meV before and after doping (Cu at 5%) respectively. The results of Hall effect measurements of ZnTe , ZnTe:Cu films show that all films were (p-type), the carrier concentration (1.1×1020 m-3) , Hall mobility (0.464m2/V.s) for pure ZnTe film, increases the carrier concentration (6.3×1021m-3) Hall mobility (2m2/V.s) for doping (Cu at 3%) film, but  decreases by increasing Cu concentration.


2013 ◽  
Vol 28 (6) ◽  
pp. 594-598 ◽  
Author(s):  
Yu-Zhen LÜ ◽  
Sheng-Nan ZHANG ◽  
Yue-Fan DU ◽  
Mu-Tian CHEN ◽  
Cheng-Rong LI

2016 ◽  
Vol 13 (1) ◽  
pp. 110-116 ◽  
Author(s):  
Rani P. Barkul ◽  
Farah-Naaz A. Shaikh ◽  
Sagar D. Delekar ◽  
Meghshyam K. Patil

Sign in / Sign up

Export Citation Format

Share Document