scholarly journals Targeted delivery of mesoporous silica nanoparticles loaded monastrol into cancer cells: an in vitro study

2017 ◽  
Vol 7 (8) ◽  
pp. 549-555 ◽  
Author(s):  
Huzaifa Hanif ◽  
Samina Nazir ◽  
Kehkashan Mazhar ◽  
Muhammad Waseem ◽  
Shazia Bano ◽  
...  
2016 ◽  
Vol 1860 (10) ◽  
pp. 2065-2075 ◽  
Author(s):  
Abhijit Sarkar ◽  
Shatadal Ghosh ◽  
Sayantani Chowdhury ◽  
Bhawna Pandey ◽  
Parames C. Sil

Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2892
Author(s):  
Stefan Franco ◽  
Achraf Noureddine ◽  
Jimin Guo ◽  
Jane Keth ◽  
Michael L. Paffett ◽  
...  

Macrophages line the walls of microvasculature, extending processes into the blood flow to capture foreign invaders, including nano-scale materials. Using mesoporous silica nanoparticles (MSNs) as a model nano-scale system, we show the interplay between macrophages and MSNs from initial uptake to intercellular trafficking to neighboring cells along microtubules. The nature of cytoplasmic bridges between cells and their role in the cell-to-cell transfer of nano-scale materials is examined, as is the ability of macrophages to function as carriers of nanomaterials to cancer cells. Both direct administration of nanoparticles and adoptive transfer of nanoparticle-loaded splenocytes in mice resulted in abundant localization of nanomaterials within macrophages 24 h post-injection, predominately in the liver. While heterotypic, trans-species nanomaterial transfer from murine macrophages to human HeLa cervical cancer cells or A549 lung cancer cells was robust, transfer to syngeneic 4T1 breast cancer cells was not detected in vitro or in vivo. Cellular connections and nanomaterial transfer in vivo were rich among immune cells, facilitating coordinated immune responses.


2021 ◽  
Vol 9 (5) ◽  
pp. 1351-1363 ◽  
Author(s):  
Elnaz Bagheri ◽  
Mona Alibolandi ◽  
Khalil Abnous ◽  
Seyed Mohammad Taghdisi ◽  
Mohammad Ramezani

In this study, a dual-receptor doxorubicin-targeted delivery system based on mesoporous silica nanoparticles (MSNs) modified with mucine-1 and ATP aptamers (DOX@MSNs-Apts) was developed.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2749 ◽  
Author(s):  
Özge Er ◽  
Suleyman Colak ◽  
Kasim Ocakoglu ◽  
Mine Ince ◽  
Roger Bresolí-Obach ◽  
...  

Background: Photodynamic therapy (PDT) is a non-invasive and innovative cancer therapy based on the photodynamic effect. In this study, we sought to determine the singlet oxygen production, intracellular uptake, and in vitro photodynamic therapy potential of Cetixumab-targeted, zinc(II) 2,3,9,10,16,17,23,24-octa(tert-butylphenoxy))phthalocyaninato(2-)-N29,N30,N31,N32 (ZnPcOBP)-loaded mesoporous silica nanoparticles against pancreatic cancer cells. Results: The quantum yield (ΦΔ) value of ZnPcOBP was found to be 0.60 in toluene. In vitro cellular studies were performed to determine the dark- and phototoxicity of samples with various concentrations of ZnPcOBP by using pancreatic cells (AsPC-1, PANC-1 and MIA PaCa-2) and 20, 30, and 40 J/cm2 light fluences. No dark toxicity was observed for any sample in any cell line. ZnPcOBP alone showed a modest photodynamic activity. However, when incorporated in silica nanoparticles, it showed a relatively high phototoxic effect, which was further enhanced by Cetuximab, a monoclonal antibody that targets the Epidermal Growth Factor Receptor (EGFR). The cell-line dependent photokilling observed correlates well with EGFR expression levels in these cells. Conclusions: Imidazole-capped Cetuximab-targeted mesoporous silica nanoparticles are excellent vehicles for the selective delivery of ZnPcOBP to pancreatic cancer cells expressing the EGFR receptor. The novel nanosystem appears to be a suitable agent for photodynamic therapy of pancreatic tumors.


Sign in / Sign up

Export Citation Format

Share Document