4t1 breast cancer
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 82)

H-INDEX

20
(FIVE YEARS 7)

Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 51
Author(s):  
Davide Raineri ◽  
Giuseppe Cappellano ◽  
Beatrice Vilardo ◽  
Federica Maione ◽  
Nausicaa Clemente ◽  
...  

Recently, we demonstrated that inducible T-cell costimulator (ICOS) shares its unique ligand (ICOSL) with osteopontin (OPN), and OPN/ICOSL binding promotes tumor metastasis and angiogenesis in the 4T1 breast cancer model. Literature showed that OPN promotes melanoma metastasis by suppressing T-cell activation and recruiting myeloid suppressor cells (MDSC). On the opposite, ICOS/ICOSL interaction usually sustains an antitumor response. Here, we engineered murine B16F10 melanoma cells, by transfecting or silencing ICOSL. In vitro data showed that loss of ICOSL favors anchorage-independent growth and induces more metastases in vivo, compared to ICOSL expressing cells. To dissect individual roles of the three molecules, we compared data from C57BL/6 with those from OPN-KO, ICOS-KO, and ICOSL-KO mice, missing one partner at a time. We found that OPN produced by the tumor microenvironment (TME) favors the metastasis by interacting with stromal ICOSL. This activity is dominantly inhibited by ICOS expressed on TME by promoting Treg expansion. Importantly, we also show that OPN and ICOSL highly interact in human melanoma metastases compared to primary tumors. Interfering with this binding may be explored in immunotherapy either for nonresponding or patients resistant to conventional therapies.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 71
Author(s):  
Nicole Lecot ◽  
Belén Dávila ◽  
Carina Sánchez ◽  
Marcelo Fernández ◽  
Mercedes González ◽  
...  

2-Amino-7-fluorophenazine 5,10-dioxide (FNZ) is a bioreducible prodrug, poorly soluble in water, with potential anticancer activity on hypoxic-tumors. This poor solubility limits its potential applications in clinic. Amphiphilic pristine polymeric micelles (PMs) based on triblock copolymers Pluronic® and Tetronic®, glycosylated derivatives and their mixtures with preformed-liposomes (LPS), were analyzed as strategies to improve the bioavailability of FNZ. FNZ encapsulations were performed and the obtaining nanostructures were characterized using UV-visible spectroscopy (UV-VIS), Transmission Electron Microscopy (TEM), Fourier transform infrared analysis and Dynamic Light Scattering (DLS). The most promising nanoformulations were analyzed for their potential toxicity and pharmacologically, at 20 mg/kg FNZ-doses, in a stage-IV murine metastatic-breast tumor model. The results revealed that the solubility of the encapsulated-FNZ increased up to seven times and the analysis (UV-VIS, DLS and TEM) confirmed the interaction between vehicles and FNZ. In all the cases appropriate encapsulation efficiencies (up to 70%), monodisperse nanometric particle sizes (PDI = 0.180–0.335), adequate Z-potentials (−1.59 to −26.4 mV), stabilities and spherical morphologies were obtained. The in vitro profile of FNZ controlled releases corresponded mainly to a kinetic Higuchi model. The in vitro/in vivo biological studies revealed non-toxicity and relevant tumor-weight diminution (up to 61%).


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiang Pan ◽  
Yuchen Qi ◽  
Zhen Du ◽  
Jian He ◽  
Sheng Yao ◽  
...  

Abstract Background Colorectal cancer is a common malignancy occurring in the digestive system and ranks second in cancer mortality worldwide. In colorectal cancer, hydrogen sulfide (H2S) is selectively upregulated, resulting in the further exacerbation of the disease. Therefore, the clearance of H2S and the regulation of the enzymes on the H2S pathways are of great significance for colorectal cancer therapy. Methods Here, we investigated the H2S content in various clinical tumor tissues from patients and confirmed that overproduced concentration of H2S in colorectal cancer. Accordingly, we developed an H2S-responsive nanoplatform based on zinc oxide coated virus-like silica nanoparticles (VZnO) for the therapy of colorectal cancer. Results Owing to its excellent H2S scavenging ability, VZnO could effectively reduce H2S content in colorectal cancer to prohibit the growth of CT26 and HCT116 colorectal cancer cells. Moreover, the removal of H2S in colorectal cancer also leads to tumor inhibition through activating ferroptosis, a non-apoptotic form of cell death. The biosafety-related toxicological and pathological analysis confirmed the low toxicity and high safety of VZnO in colorectal cancer treatment. Furthermore, as an H2S-responsible nanosystem, VZnO appears to have no therapeutic effect on other non H2S rich cancers, such as the 4T1 breast cancer model. Conclusions We anticipate that the H2S-depletion-induced ferroptosis strategy using zinc oxide-based nanomaterials would provide insights in designing nanomedicines for colorectal cancer-target theranostics and may offer clinical promise. Graphic abstract


2021 ◽  
Author(s):  
Lu Zhang ◽  
Ruonan Bo ◽  
Yi Wu ◽  
Longmeng Li ◽  
Zheng Zhu ◽  
...  

Abstract Immune checkpoint blockade (ICB) therapy has revolutionized clinical oncology. However, the efficacy of ICB therapy is limited by the ineffective homing of T effector (Teff) cells to tumours and the immunosuppressive tumour microenvironment (TME). Here, we report a programmable tumour cells/Teff cells bispecific nano-immuno-engager (NIE) that can circumvent these limitations to improve ICB therapy. We have developed 28 nm non-toxic peptidic micellar nanoparticles (NIE-NPs) that bind α3β1 integrin on tumour cells membrane and undergo in situ transformation on surface of tumour cells into nanofibrillar network (NIE-NFs). The nanofibrillar network persistently facilitates cytotoxic T cells’ homing to the proximity of tumour cells via activatable α4β1 integrin ligands, and also allows sustained release of resiquimod to reprogram the TME. This bispecific NIE eliminates syngeneic 4T1 breast cancer and Lewis lung cancer models in mice, when given together with anti-PD-1 antibody. The in vivo structural transformation-based supramolecular bispecific NIE represents an innovative class of programmable receptor-mediated targeted immunotherapeutics to greatly enhance ICB therapy against cancers.


2021 ◽  
Vol 11 ◽  
Author(s):  
Xin Zheng ◽  
Zijian Liu ◽  
Mi Mi ◽  
Qiuyue Wen ◽  
Gang Wu ◽  
...  

Immune checkpoint blockade (ICB), particularly programmed death 1 (PD-1) and its ligand (PD-L1), has shown considerable clinical benefits in patients with various cancers. Many studies show that PD-L1 expression may be biomarkers to help select responders for anti-PD-1 treatment. Therefore, it is necessary to elucidate the molecular mechanisms that control PD-L1 expression. As a potential chemosensitizer and anticancer drug, disulfiram (DSF) kills tumor cells via regulating multiple signaling pathways and transcription factors. However, its effect on tumor immune microenvironment (TIME) remains unclear. Here, we showed that DSF increased PD-L1 expression in triple negative breast cancer (TNBC) cells. Through bioinformatics analysis, we found that DNMT1 was highly expressed in TNBC tissue and PD-L1 was negatively correlated with IRF7 expression. DSF reduced DNMT1 expression and activity, and hypomethylated IRF7 promoter region resulting in upregulation of IRF7. Furthermore, we found DSF enhanced PD-L1 expression via DNMT1-mediated IRF7 hypomethylation. In in vivo experiments, DSF significantly improved the response to anti-PD-1 antibody (Ab) in 4T1 breast cancer mouse model. Immunohistochemistry staining showed that granzyme B+ and CD8+ T cells in the tumor tissues were significantly increased in the combination group. By analyzing the results of the tumor tissue RNA sequencing, four immune-associated pathways were significantly enriched in the DSF joint anti-PD-1 Ab group. In conclusion, we found that DSF could upregulate PD-L1 in TNBC cells and elucidated its mechanism. Our findings revealed that the combination of DSF and anti-PD-1 Ab could activate TIME to show much better antitumor efficacy than monotherapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pan Zhang ◽  
Xing Lai ◽  
Mao-Hua Zhu ◽  
Mei Long ◽  
Xue-Liang Liu ◽  
...  

Saikosaponin A (SSA), a main triterpenoid saponin component from Radix Bupleurum, has been revealed to have a variety of pharmacological activities. However, whether SSA can inhibit angiogenesis, a key step in solid tumor progression, remains unknown. In this study, we demonstrated that SSA could powerfully suppress the proliferation, migration, and tube formation of human umbilical vein endothelial cells. SSA also significantly inhibited angiogenesis in the models of the chick embryo chorioallantoic membrane and Matrigel plugs. Moreover, SSA was found to inhibit tumor growth in both orthotopic 4T1 breast cancer and subcutaneous HCT-15 colorectal tumor by the inhibition of tumor angiogenesis. Western blot assay indicated the antiangiogenic mechanism of SSA in the suppression of the protein phosphorylation of VEGFR2 and the downstream protein kinase including PLCγ1, FAK, Src, and Akt. In summary, SSA can suppress angiogenesis and tumor growth by blocking the VEGFR2-mediated signaling pathway.


2021 ◽  
Vol 43 (3) ◽  
pp. 1726-1740
Author(s):  
Mayu Imamura ◽  
Tiantian Li ◽  
Chunning Li ◽  
Masayoshi Fujisawa ◽  
Naofumi Mukaida ◽  
...  

The chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2) is shown to promote the progression of breast cancer. We previously identified cancer cell-derived granulocyte-macrophage colony-stimulating factor (GM-CSF) as a potential regulator of MCP-1 production in the murine 4T1 breast cancer, but it played a minimum role in overall MCP-1 production. Here, we evaluated the crosstalk between 4T1 cells and fibroblasts. When fibroblasts were co-cultured with 4T1 cells or stimulated with the culture supernatants of 4T1 cells (4T1-sup), MCP-1 production by fibroblasts markedly increased. 4T1 cells expressed mRNA for platelet-derived growth factor (PDGF)-a, b and c, and the PDGF receptor inhibitor crenolanib almost completely inhibited 4T1-sup-induced MCP-1 production by fibroblasts. However, PDGF receptor antagonists failed to reduce MCP-1 production in tumor-bearing mice. Histologically, 4T1 tumors contained a small number of αSMA-positive fibroblasts, and Mcp-1 mRNA was mainly associated with macrophages, especially those surrounding necrotic lesions on day 14, by in situ hybridization. Thus, although cancer cells have the capacity to crosstalk with fibroblasts via PDGFs, this crosstalk does not play a major role in MCP-1 production or cancer progression in this model. Unraveling complex crosstalk between cancer cells and stromal cells will help us identify new targets to help treat breast cancer patients.


Antibiotics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1136
Author(s):  
Mostafa Abdel-Salam ◽  
Bárbara Pinto ◽  
Geovanni Cassali ◽  
Lilian Bueno ◽  
Gabriela Pêgas ◽  
...  

Cationic anticancer peptides have exhibited potent anti-proliferative and anti-inflammatory effects in neoplastic illness conditions. LyeTx I-b is a synthetic peptide derived from Lycosa erythrognatha spider venom that previously showed antibiotic activity in vitro and in vivo. This study focused on the effects of LyeTxI-b on a 4T1 mouse mammary carcinoma model. Mice with a palpable tumor in the left flank were subcutaneously or intratumorally injected with LyeTx I-b (5 mg/kg), which significantly decreased the tumor volume and metastatic nodules. Histological analyses showed a large necrotic area in treated primary tumors compared to the control. LyeTxI-b reduced tumor growth and lung metastasis in the 4T1 mouse mammary carcinoma model with no signs of toxicity in healthy or cancerous mice. The mechanism of action of LyeTx I-b on the 4T1 mouse mammary carcinoma model was evaluated in vitro and is associated with induction of apoptosis and cell proliferation inhibition. Furthermore, LyeTx I-b seems to be an efficient regulator of the 4T1 tumor microenvironment by modulating several cytokines, such as TGF-β, TNF-α, IL-1β, IL-6, and IL-10, in primary tumor and lung, spleen, and brain. LyeTx I-b also plays a role in leukocytes rolling and adhesion into spinal cord microcirculation and in the number of circulating leukocytes. These data suggest a potent antineoplastic efficacy ofLyeTx I-b.


2021 ◽  
Vol 22 (18) ◽  
pp. 9951
Author(s):  
Yue Lou ◽  
Junjun Wang ◽  
Peng Peng ◽  
Shicheng Wang ◽  
Ping Liu ◽  
...  

Immunotherapy has emerged as a therapeutic pillar in tumor treatment, but only a minority of patients get benefit. Overcoming the limitations of immunosuppressive environment is effective for immunotherapy. Moreover, host T cell activation and longevity within tumor are required for the long-term efficacy. In our previous study, a novel cryo-thermal therapy was developed to improve long-term survival in B16F10 melanoma and s.q. 4T1 breast cancer mouse models. We determined that cryo-thermal therapy induced Th1-dominant CD4+ T cell differentiation and the downregulation of Tregs in B16F10 model, contributing to tumor-specific and long-lasting immune protection. However, whether cryo-thermal therapy can affect the differentiation and function of T cells in a s.q. 4T1 model remains unknown. In this study, we also found that cryo-thermal therapy induced Th1-dominant differentiation of CD4+ T cells and the downregulation of effector Tregs. In particular, cryo-thermal therapy drove the fragility of Tregs and impaired their function. Furthermore, we discovered the downregulated level of serum tumor necrosis factor-α at the late stage after cryo-thermal therapy which played an important role in driving Treg fragility. Our findings revealed that cryo-thermal therapy could reprogram the suppressive environment and induce strong and durable antitumor immunity, which facilitate the development of combination strategies in immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document