Nanomaterial-aided seed regeneration in the global warming scenario: multiwalled carbon nanotubes, gold nanoparticles and heat-aged maize seeds

Author(s):  
Magdalena González Alejandre ◽  
Vivechana Agarwal ◽  
Miguel Martínez Trujillo ◽  
Juan Carlos González Cortes ◽  
Nabanita Dasgupta-Schubert
2020 ◽  
Vol 16 (7) ◽  
pp. 905-913
Author(s):  
Youyuan Peng ◽  
Qingshan Miao

Background: L-Ascorbic acid (AA) is a kind of water soluble vitamin, which is mainly present in fruits, vegetables and biological fluids. As a low cost antioxidant and effective scavenger of free radicals, AA may help to prevent diseases such as cancer and Parkinson’s disease. Owing to its role in the biological metabolism, AA has also been utilized for the therapy of mental illness, common cold and for improving the immunity. Therefore, it is very necessary and urgent to develop a simple, rapid and selective strategy for the detection of AA in various samples. Methods: The molecularly imprinted poly(o-phenylenediamine) (PoPD) film was prepared for the analysis of L-ascorbic acid (AA) on gold nanoparticles (AuNPs) - multiwalled carbon nanotubes (MWCNTs) modified glass carbon electrode (GCE) by electropolymerization of o-phenylenediamine (oPD) and AA. Experimental parameters including pH value of running buffer and scan rates were optimized. Scanning electron microscope (SEM), fourier-transform infrared (FTIR) spectra, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were utilized for the characterization of the imprinted polymer film. Results: Under the selected experimental conditions, the DPV peak currents of AA exhibit two distinct linear responses ranging from 0.01 to 2 μmol L-1 and 2 to 100 μmol L-1 towards the concentrations of AA, and the detection limit was 2 nmol L-1 (S/N=3). Conclusion: The proposed electrochemical sensor possesses excellent selectivity for AA, along with good reproducibility and stability. The results obtained from the analysis of AA in real samples demonstrated the applicability of the proposed sensor to practical analysis.


Talanta ◽  
2017 ◽  
Vol 167 ◽  
pp. 462-469 ◽  
Author(s):  
Hend Samy Magar ◽  
Mariana Emilia Ghica ◽  
Mohammed Nooredeen Abbas ◽  
Christopher M.A. Brett

2004 ◽  
Vol 818 ◽  
Author(s):  
Xicheng Ma ◽  
Ning Lun ◽  
Xia Li ◽  
Shulin Wen

AbstractCreating hybrid nanostructures of disparate nanoscale blocks is of interest of exploring new types of electronic devices and networks. Here, we demonstrate the novel coupling of gold nanoparticles of 3-4 nm diameters to sidewall of multiwalled carbon nanotubes (MWNTs) using the electroless plating technique. MWNTs were initially chemically modified with an H2SO4-HNO3 acid treatment, and subsequently activated with Pd-Sn catalytic nuclei via a one-step activation approach. When the activated MWNTs were immersed in a gold-containing electroless plating bath, gold deposition occurred at the catalytic sites. The deposited gold clusters then catalyze further gold deposition on the tube surface (autocatalytic process). Novel hybrid nanostructures with gold nanoparticles homogeneously distributed on MWNTs resulted. High-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS) were used to characterize the conjugation process.


Sign in / Sign up

Export Citation Format

Share Document