scholarly journals ddRAD-seq derived genome-wide SNPs, high density linkage map and QTLs for fruit quality traits in strawberry (Fragaria x ananassa)

3 Biotech ◽  
2020 ◽  
Vol 10 (8) ◽  
Author(s):  
Sathishkumar Natarajan ◽  
Mohammad Rashed Hossain ◽  
Hoy-Taek Kim ◽  
Michael Immanuel Jesse Denison ◽  
Mostari Jahan Ferdous ◽  
...  
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Molla F. Mengist ◽  
Hamed Bostan ◽  
Elisheba Young ◽  
Kristine L. Kay ◽  
Nicholas Gillitt ◽  
...  

AbstractFruit quality traits play a significant role in consumer preferences and consumption in blueberry (Vaccinium corymbosum L). The objectives of this study were to construct a high-density linkage map and to identify the underlying genetic basis of fruit quality traits in blueberry. A total of 287 F1 individuals derived from a cross between two southern highbush blueberry cultivars, ‘Reveille’ and ‘Arlen’, were phenotyped over three years (2016–2018) for fruit quality-related traits, including titratable acidity, pH, total soluble solids, and fruit weight. A high-density linkage map was constructed using 17k single nucleotide polymorphisms markers. The linkage map spanned a total of 1397 cM with an average inter-loci distance of 0.08 cM. The quantitative trait loci interval mapping based on the hidden Markov model identified 18 loci for fruit quality traits, including seven loci for fruit weight, three loci for titratable acidity, five loci for pH, and three loci for total soluble solids. Ten of these loci were detected in more than one year. These loci explained phenotypic variance ranging from 7 to 28% for titratable acidity and total soluble solid, and 8–13% for pH. However, the loci identified for fruit weight did not explain more than 10% of the phenotypic variance. We also reported the association between fruit quality traits and metabolites detected by Proton nuclear magnetic resonance analysis directly responsible for these fruit quality traits. Organic acids, citric acid, and quinic acid were significantly (P < 0.05) and positively correlated with titratable acidity. Sugar molecules showed a strong and positive correlation with total soluble solids. Overall, the study dissected the genetic basis of fruit quality traits and established an association between these fruit quality traits and metabolites.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ming-Yue Zhang ◽  
Cheng Xue ◽  
Hongju Hu ◽  
Jiaming Li ◽  
Yongsong Xue ◽  
...  

AbstractPear is a major fruit tree crop distributed worldwide, yet its breeding is a very time-consuming process. To facilitate molecular breeding and gene identification, here we have performed genome-wide association studies (GWAS) on eleven fruit traits. We identify 37 loci associated with eight fruit quality traits and five loci associated with three fruit phenological traits. Scans for selective sweeps indicate that traits including fruit stone cell content, organic acid and sugar contents might have been under continuous selection during breeding improvement. One candidate gene, PbrSTONE, identified in GWAS, has been functionally verified to be involved in the regulation of stone cell formation, one of the most important fruit quality traits in pear. Our study provides insights into the complex fruit related biology and identifies genes controlling important traits in pear through GWAS, which extends the genetic resources and basis for facilitating molecular breeding in perennial trees.


2018 ◽  
Vol 18 (1) ◽  
Author(s):  
L. Pereira ◽  
V. Ruggieri ◽  
S. Pérez ◽  
K. G. Alexiou ◽  
M. Fernández ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Cassia da Silva Linge ◽  
Lichun Cai ◽  
Wanfang Fu ◽  
John Clark ◽  
Margaret Worthington ◽  
...  

Peach is one of the most important fruit crops in the world, with the global annual production about 24.6 million tons. The United States is the fourth-largest producer after China, Spain, and Italy. Peach consumption has decreased over the last decade, most likely due to inconsistent quality of the fruit on the market. Thus, marker-assisted selection for fruit quality traits is highly desired in fresh market peach breeding programs and one of the major goals of the RosBREED project. The ability to use DNA information to select for desirable traits would enable peach breeders to efficiently plan crosses and select seedlings with desired quality traits early in the selection process before fruiting. Therefore, we assembled a multi-locus genome wide association study (GWAS) of 620 individuals from three public fresh market peach breeding programs (Arkansas, Texas, and South Carolina). The material was genotyped using 9K SNP array and the traits were phenotyped for three phenological (bloom date, ripening date, and days after bloom) and 11 fruit quality-related traits (blush, fruit diameter, fruit weight, adherence, fruit firmness, redness around pit, fruit texture, pit weight, soluble solid concentration, titratable acidity, and pH) over three seasons (2010, 2011, and 2012). Multi-locus association analyses, carried out using mrMLM 4.0 and FarmCPU R packages, revealed a total of 967 and 180 quantitative trait nucleotides (QTNs), respectively. Among the 88 consistently reliable QTNs detected using multiple multi-locus GWAS methods and/or at least two seasons, 44 were detected for the first time. Fruit quality hotspots were identified on chromosomes 1, 3, 4, 5, 6, and 8. Out of 566 candidate genes detected in the genomic regions harboring the QTN clusters, 435 were functionally annotated. Gene enrichment analyses revealed 68 different gene ontology (GO) terms associated with fruit quality traits. Data reported here advance our understanding of genetic mechanisms underlying important fruit quality traits and further support the development of DNA tools for breeding.


2004 ◽  
pp. 331-336 ◽  
Author(s):  
E. Lerceteau-Köhler ◽  
A. Moing ◽  
G. Guérin ◽  
C. Renaud ◽  
S. Courlit ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document