scholarly journals Model for generating artificial social networks having community structures with small-world and scale-free properties

2013 ◽  
Vol 3 (3) ◽  
pp. 597-609 ◽  
Author(s):  
Arnaud Sallaberry ◽  
Faraz Zaidi ◽  
Guy Melançon
2021 ◽  
Vol 7 (5) ◽  
pp. 2286-2297
Author(s):  
Tao Xiaobo ◽  
Jin Ziniu

Objectives: Social networks are widely used for proping the process of tobacco control in emerging markets, but their formation and effects are not well understood. Using the micro blogging platform Sina (Sina Weibo, China’s Twitter) as an example, this article conducts a multi-agent simulation analysis of the Netlogo platform to analyze the micro-level behavioral characteristics of former smokers and macro-evolutionary law in the formation of social networks in emerging markets. The results show that the tobacco control in use of social networks have two characteristics: limitations on the size of the network and the in-degree and out-degree of its nodes as well as heterogeneous attributes of the nodes. This kind of network is better at simulating a real social network than small-world and scale-free networks.


2009 ◽  
Vol 20 (06) ◽  
pp. 799-815 ◽  
Author(s):  
JULIÁN CANDIA

Irreversible opinion spreading phenomena are studied on small-world and scale-free networks by means of the magnetic Eden model, a nonequilibrium kinetic model for the growth of binary mixtures in contact with a thermal bath. In this model, the opinion of an individual is affected by those of their acquaintances, but opinion changes (analogous to spin flips in an Ising-like model) are not allowed. We focus on the influence of advertising, which is represented by external magnetic fields. The interplay and competition between temperature and fields lead to order–disorder transitions, which are found to also depend on the link density and the topology of the complex network substrate. The effects of advertising campaigns with variable duration, as well as the best cost-effective strategies to achieve consensus within different scenarios, are also discussed.


2003 ◽  
Vol 9 (4) ◽  
pp. 343-356 ◽  
Author(s):  
Marco A. Janssen ◽  
Wander Jager

Markets can show different types of dynamics, from quiet markets dominated by one or a few products, to markets with continual penetration of new and reintroduced products. In a previous article we explored the dynamics of markets from a psychological perspective using a multi-agent simulation model. The main results indicated that the behavioral rules dominating the artificial consumer's decision making determine the resulting market dynamics, such as fashions, lock-in, and unstable renewal. Results also show the importance of psychological variables like social networks, preferences, and the need for identity to explain the dynamics of markets. In this article we extend this work in two directions. First, we will focus on a more systematic investigation of the effects of different network structures. The previous article was based on Watts and Strogatz's approach, which describes the small-world and clustering characteristics in networks. More recent research demonstrated that many large networks display a scale-free power-law distribution for node connectivity. In terms of market dynamics this may imply that a small proportion of consumers may have an exceptional influence on the consumptive behavior of others (hubs, or early adapters). We show that market dynamics is a self-organized property depending on the interaction between the agents' decision-making process (heuristics), the product characteristics (degree of satisfaction of unit of consumption, visibility), and the structure of interactions between agents (size of network and hubs in a social network).


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 299 ◽  
Author(s):  
Yuhui Gong ◽  
Qian Yu

Conformity is a common phenomenon among people in social networks. In this paper, we focus on customers’ conformity behaviors in a symmetry market where customers are located in a social network. We establish a conformity model and analyze it in ring network, random network, small-world network, and scale-free network. Our simulations shown that topology structure, network size, and initial market share have significant effects on the evolution of customers’ conformity behaviors. The market will likely converge to a monopoly state in small-world networks but will form a duopoly market in scale networks. As the size of the network increases, there is a greater possibility of forming a dominant group of preferences in small-world network, and the market will converge to the monopoly of the product which has the initial selector in the market. Also, network density will become gradually significant in small-world networks.


Author(s):  
Vasiliki G. Vrana ◽  
Dimitrios A. Kydros ◽  
Evangelos C. Kehris ◽  
Anastasios-Ioannis T. Theocharidis ◽  
George I. Kavavasilis

Pictures speak louder than words. In this fast-moving world where people hardly have time to read anything, photo-sharing sites become more and more popular. Instagram is being used by millions of people and has created a “sharing ecosystem” that also encourages curation, expression, and produces feedback. Museums are moving quickly to integrate Instagram into their marketing strategies, provide information, engage with audience and connect to other museums Instagram accounts. Taking into consideration that people may not see museum accounts in the same way that the other museum accounts do, the article first describes accounts' performance of the top, most visited museums worldwide and next investigates their interconnection. The analysis uses techniques from social network analysis, including visualization algorithms and calculations of well-established metrics. The research reveals the most important modes of the network by calculating the appropriate centrality metrics and shows that the network formed by the museum Instagram accounts is a scale–free small world network.


2008 ◽  
Vol 22 (05) ◽  
pp. 553-560 ◽  
Author(s):  
WU-JIE YUAN ◽  
XIAO-SHU LUO ◽  
PIN-QUN JIANG ◽  
BING-HONG WANG ◽  
JIN-QING FANG

When being constructed, complex dynamical networks can lose stability in the sense of Lyapunov (i. s. L.) due to positive feedback. Thus, there is much important worthiness in the theory and applications of complex dynamical networks to study the stability. In this paper, according to dissipative system criteria, we give the stability condition in general complex dynamical networks, especially, in NW small-world and BA scale-free networks. The results of theoretical analysis and numerical simulation show that the stability i. s. L. depends on the maximal connectivity of the network. Finally, we show a numerical example to verify our theoretical results.


2015 ◽  
Vol 29 (32) ◽  
pp. 1550234
Author(s):  
Yunhua Liao ◽  
Xiaoliang Xie

The lattice gas model and the monomer-dimer model are two classical models in statistical mechanics. It is well known that the partition functions of these two models are associated with the independence polynomial and the matching polynomial in graph theory, respectively. Both polynomials have been shown to belong to the “[Formula: see text]-complete” class, which indicate the problems are computationally “intractable”. We consider these two polynomials of the Koch networks which are scale-free with small-world effects. Explicit recurrences are derived, and explicit formulae are presented for the number of independent sets of a certain type.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xiuwen Fu ◽  
Yongsheng Yang ◽  
Haiqing Yao

Previous research of wireless sensor networks (WSNs) invulnerability mainly focuses on the static topology, while ignoring the cascading process of the network caused by the dynamic changes of load. Therefore, given the realistic features of WSNs, in this paper we research the invulnerability of WSNs with respect to cascading failures based on the coupled map lattice (CML). The invulnerability and the cascading process of four types of network topologies (i.e., random network, small-world network, homogenous scale-free network, and heterogeneous scale-free network) under various attack schemes (i.e., random attack, max-degree attack, and max-status attack) are investigated, respectively. The simulation results demonstrate that the rise of interference R and coupling coefficient ε will increase the risks of cascading failures. Cascading threshold values Rc and εc exist, where cascading failures will spread to the entire network when R>Rc or ε>εc. When facing a random attack or max-status attack, the network with higher heterogeneity tends to have a stronger invulnerability towards cascading failures. Conversely, when facing a max-degree attack, the network with higher uniformity tends to have a better performance. Besides that, we have also proved that the spreading speed of cascading failures is inversely proportional to the average path length of the network and the increase of average degree k can improve the network invulnerability.


2013 ◽  
Vol 110 (10) ◽  
Author(s):  
Ralph Stoop ◽  
Victor Saase ◽  
Clemens Wagner ◽  
Britta Stoop ◽  
Ruedi Stoop

Sign in / Sign up

Export Citation Format

Share Document