Experimental Research of Axial Compression Bearing Capacity on RC Columns Strengthened with Angle Steel and Self-Compacting Concrete

Author(s):  
Qiang Hu ◽  
Songlin Jia ◽  
Huiqin Wu ◽  
Tongkuai Wang
2012 ◽  
Vol 166-169 ◽  
pp. 881-884
Author(s):  
Bao Rong Huo ◽  
Xiang Dong Zhang

12 RC columns were made, including nine RC columns wrapped with BFRP, three RC columns without any reinforcement, to conduct the comparative study of axial compression. The result shows that the bearing capacity of the RC columns reinforced with the fibers increases obviously.The displacement ductility factor increases, but its increase rate becomes slow with increasing layers of fiber cloth, so the most economical layer number is 3. Based on the confinement mechanism of FRP cloth and the calculation formula of the bearing capacity for common RC column, the formula of the bearing capacity for reinforced RC column with BFRP cloth is proposed. The result of calculation basically tallies with the number in experiment.


2013 ◽  
Vol 831 ◽  
pp. 158-163
Author(s):  
Jun Ting Jiao ◽  
Rong Hua Yang

In order to select sensitivity parameter of bearing capacity and ductility, the orthogonal design method was used to research reinforced concrete (RC) columns with Z-shaped cross-section under compression and bending, by the nonlinear analysis computer program of RC columns with irregularly-shaped cross-section. The seven parameters and four levels of orthogonal design were researched, for example ratio of limb length to limb thickness, ratio of axial compression, loading angle, concrete strength, long reinforce ratio, stirrup diameter and stirrup spacing. The results indicated that the best sensitivity factor of bearing capacity was ratio of limb length to limb thickness, next were loading angle and long reinforce ratio; the best sensitivity factor of ductility was ratio of axial compression, next were stirrup diameter and stirrup spacing. These would afford references for the design of RC columns with Z-shaped cross-section.


2018 ◽  
Vol 234 ◽  
pp. 04003
Author(s):  
Nataliia Smirnova ◽  
Sergiy Bugayevskiy ◽  
Andrii Ihnatenko ◽  
Olena Synkovska ◽  
Maksym Kovalov

A new constructive design of a bridge column pier, which is a load-bearing component of bridges and overpasses as well as of complex multilevel interchanges underlying a transport infrastructure, is proposed. The design is based on a steel mesh casing that is made from a solid-web plate by means of cutting meshes and further expansion of the solid-web plate using non-waste technology. Experimental research data on the bearing capacity and deformability of the cylindrical steel-concrete load bearing components of bridge column piers are provided. They are compared with research data on load bearing components having a solid casing. To make the experimental picture complete, analogous research data on cylindrical concrete load bearing components are provided. This experiment includes static and low-cycle loadings of samples under axial compression mentioned above. On the basis of the information obtained, the effort and travel fields are formed, the critical forces of structure buckling are determined. The analysis of the rationality of the cylindrical steel-concrete load bearing component of bridge column piers is carried out, using the experimental research data. To verify the research data, which are obtained in the course of the study of the critical forces of cylindrical steel-concrete load bearing component buckling, the experimental results are compared with theoretical ones.


2011 ◽  
Vol 94-96 ◽  
pp. 481-484 ◽  
Author(s):  
Bao Rong Huo ◽  
Xiang Dong Zhang

Abstract:Twenty-one RC columns were made, including nine RC columns wrapped with BFRP, nine RC columns wrapped with CFRP, three RC columns without any reinforcement, to conduct the comparative study of axial compression. The result shows that the bearing capacity of the RC columns reinforced with the fibers increases obviously. The bearing capacity of the RC columns with CFRP is higher than that with BFRP, but the difference is not obvious. The displacement ductility factor increases, but its increase rate becomes slow with increasing layers of fiber cloth, so the most economical layer number is 3. Based on the confinement mechanism of FRP cloth and the calculation formula of the bearing capacity for common RC column, the formula of the bearing capacity for reinforced RC column with BFRP cloth is proposed. The result of calculation basically tallies with the number in experiment.


2019 ◽  
Vol 23 (5) ◽  
pp. 2158-2174 ◽  
Author(s):  
He Zhang ◽  
Pingzhou Cao ◽  
Kai Wu ◽  
Chao Xu ◽  
Lijian Ren

2021 ◽  
Vol 11 (9) ◽  
pp. 4043
Author(s):  
Aleksandar Landović ◽  
Miroslav Bešević

Experimental research on axially compressed columns made from reinforced concrete (RC) and RC columns strengthened with a steel jacket and additional fill concrete is presented in this paper. A premade squared cross-section RC column was placed inside a steel tube, and then the space between the column and the tube was filled with additional concrete. A total of fourteen stub axially compressed columns, including nine strengthened specimens and five plain reinforced concrete specimens, were experimentally tested. The main parameter that was varied in the experiment was the compressive strength of the filler concrete. Three different concrete compression strength classes were used. Test results showed that all three cross-section parts (the core column, the fill, and the steel jacket) worked together in the force-carrying process through all load levels, even if only the basic RC column was loaded. The strengthened columns exhibited pronounced ductile behavior compared to the plain RC columns. The influence of the test parameters on the axial compressive strength was investigated. In addition, the specimen failure modes, strain development, and load vs. deformation relations were registered. The applicability of three different design codes to predict the axial bearing capacity of the strengthened columns was also investigated.


2014 ◽  
Vol 488-489 ◽  
pp. 497-500
Author(s):  
You Lin Zou ◽  
Pei Yan Huang

Deem test results from the low reversed cyclic loading quasi-static test with 2 RC columns as the basic information of secant stiffness damage of the reference column and take use of the TMS instrument in the test to artificially make the damage percentage of secant stiffness of the RC column as 33%, 50% and 66%, 6 damaged columns in total; reinforce the 6 damaged columns and 2 undamaged ones under the same conditions with AFL, through quasi-static contrast test. Test results show that it is able to effectively boost horizontal ultimate bearing capacity and ductility deformability of the RC columns with AFL for reinforcement; besides, there is a linear function relationship between horizontal ultimate bearing capacity, target ductility factor, and damage percentage of secant stiffness.


Sign in / Sign up

Export Citation Format

Share Document