Screen Space Ambient Occlusion Based Multiple Importance Sampling for Real-Time Rendering

3D Research ◽  
2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Abd El Mouméne Zerari ◽  
Mohamed Chaouki Babahenini
Author(s):  
Jop Vermeer ◽  
Leonardo Scandolo ◽  
Elmar Eisemann

Ambient occlusion (AO) is a popular rendering technique that enhances depth perception and realism by darkening locations that are less exposed to ambient light (e.g., corners and creases). In real-time applications, screen-space variants, relying on the depth buffer, are used due to their high performance and good visual quality. However, these only take visible surfaces into account, resulting in inconsistencies, especially during motion. Stochastic-Depth Ambient Occlusion is a novel AO algorithm that accounts for occluded geometry by relying on a stochastic depth map, capturing multiple scene layers per pixel at random. Hereby, we efficiently gather missing information in order to improve upon the accuracy and spatial stability of conventional screen-space approximations, while maintaining real-time performance. Our approach integrates well into existing rendering pipelines and improves the robustness of many different AO techniques, including multi-view solutions.


2011 ◽  
Vol 10 (4) ◽  
pp. 61-65
Author(s):  
Robert Sajko ◽  
Zeljka Mihajlovic

The quality of computer rendering and perception of realism greatly depend on the shading method used to implement the interaction of light with the surfaces of objects in a scene. Ambient occlusion (AO) enhances the realistic impression of rendered objects and scenes. Properties that make Screen Space Ambient Occlusion (SSAO) interesting for real-time graphics are scene complexity independence, and support for fully dynamic scenes. However, there are also important issues with current approaches: poor texture cache use, introduction of noise, and performance swings. In this paper, a straightforward solution is presented. Instead of a traditional, geometry-based sampling method, a novel, image-based sampling method is developed, coupled with a revised heuristic function for computing occlusion. Proposed algorithm harnessing GPU power improves texture cache use and reduces aliasing artifacts. Two implementations are developed, traditional and novel, and their comparison reveals improved performance and quality of the proposed algorithm.


Author(s):  
Lei Ren ◽  
Ying Song

AbstractAmbient occlusion (AO) is a widely-used real-time rendering technique which estimates light intensity on visible scene surfaces. Recently, a number of learning-based AO approaches have been proposed, which bring a new angle to solving screen space shading via a unified learning framework with competitive quality and speed. However, most such methods have high error for complex scenes or tend to ignore details. We propose an end-to-end generative adversarial network for the production of realistic AO, and explore the importance of perceptual loss in the generative model to AO accuracy. An attention mechanism is also described to improve the accuracy of details, whose effectiveness is demonstrated on a wide variety of scenes.


Author(s):  
Andrew Astapov ◽  
Vladimir Alexandrovich Frolov ◽  
Vladimir Alexandrovich Galaktionov

Screen-space Ambient Occlusion (SSAO) methods have become an integral part of the process of calculating global illumination effects in real-time applications. The use of ambient occlusion improves the perception of the geometry of the scene, and also makes a significant contribution to the realism of the rendered image. However, the problems of accuracy and efficiency of algorithms of calculating ambient occlusion remain relevant. Most of the existing methods have similar algorithmic complexity, what makes their use in real-time applications very limited. The performance issues of methods working in the screen space are particularly acute in the current growing spreadness of 4K (3840 x 2160 pixels) resolution of the rendered image. In this paper we provide our own algorithm Pyramid HBAO, which enhances the classic HBAO method by changing its calculation complexity for high resolution.


2012 ◽  
Vol 38 (10) ◽  
pp. 1663
Author(s):  
Le-Jun SHEN ◽  
Zhi-Sheng YOU ◽  
Xiao-Feng LI

2021 ◽  
Vol 11 (9) ◽  
pp. 3871
Author(s):  
Jérôme Morio ◽  
Baptiste Levasseur ◽  
Sylvain Bertrand

This paper addresses the estimation of accurate extreme ground impact footprints and probabilistic maps due to a total loss of control of fixed-wing unmanned aerial vehicles after a main engine failure. In this paper, we focus on the ground impact footprints that contains 95%, 99% and 99.9% of the drone impacts. These regions are defined here with density minimum volume sets and may be estimated by Monte Carlo methods. As Monte Carlo approaches lead to an underestimation of extreme ground impact footprints, we consider in this article multiple importance sampling to evaluate them. Then, we perform a reliability oriented sensitivity analysis, to estimate the most influential uncertain parameters on the ground impact position. We show the results of these estimations on a realistic drone flight scenario.


2013 ◽  
Vol 22 (06) ◽  
pp. 1360019
Author(s):  
DAMON BLANCHETTE ◽  
EMMANUEL AGU

Spectral rendering, or the synthesis of images by taking into account the constituent wavelengths of white light, enables the rendering of iridescent colors caused by phenomena such as dispersion, diffraction, interference and scattering. Caustics, the focusing and defocusing of light through a refractive medium, can be interpreted as a special case of dispersion where all the wavelengths travel along the same paths. In this paper we extend Adaptive Caustic Mapping (ACM), a previously proposed caustics mapping algorithm, to handle physically-based dispersion. Because ACM can display caustics in real-time, it is amenable to extension to handle the more general case of dispersion. We also present a novel algorithm for filling in the gaps that occur due to discrete sampling of the spectrum. Our proposed method runs in screen-space, and is fast enough to display plausible dispersion phenomena at real-time and interactive frame rates.


Sign in / Sign up

Export Citation Format

Share Document