Structural health monitoring of slab-column connections using FBG sensors

2012 ◽  
Vol 2 (1) ◽  
pp. 17-27 ◽  
Author(s):  
E. Rizk ◽  
H. Marzouk ◽  
A. Hussein ◽  
X. Gu
2021 ◽  
Author(s):  
Ainulla Khan ◽  
Krishnan Balasubramaniam

Abstract The continuous Non-Destructive Evaluation of assets for long-term assurance of performance has led to several developments over the deployment of a Real-Time Structural Health Monitoring (SHM) system. Considering the challenges involved under the implementation of an SHM system for the applications working under harsh environmental conditions with limited access to power sources this work is aimed to contribute towards overcoming those challenges by using the noise from the structure’s machinery or any ambient source as an alternative energy source and employing Fiber Optics based sensing, for its applicability under harsh environments. The required SHM system is realized with the cross-correlation of a fully diffused noise field, sensed using the Fiber Bragg Grating (FBG) sensors at two random locations. With no control on the input received as noise, to this end, a method is developed based on a Deep Learning framework, which is aimed towards a Universal Deployment of the passive SHM system. The methodology is designed to perform the health monitoring of the system, independent of the input perturbations. The validation performed on simulation data has demonstrated the feasibility of the developed technique towards the required kind of passive SHM system.


2005 ◽  
Vol 297-300 ◽  
pp. 2158-2163
Author(s):  
Won Seok Kim ◽  
Sang Hoon Kim ◽  
Jung Ju Lee

In this paper, a new Structural Health Monitoring (SHM) technique for composite laminates through the use of embedded FBG sensors is presented. This method monitors the ply stress states of a laminate and compares them with failure criteria continuously during structures’ service time. The ply stress state of each ply composing the composite laminate can be obtained by embedding three FBG sensors in the laminate based on the classical lamination theory. In this study FBG sensor embedded graphite/epoxy composite laminate specimens were fabricated. With ply stress states being monitored, tension and fatigue tests were performed until laminates’ failure. Experimental results show that laminates experience fracture when the ply stress states are beyond the boundaries of failure criteria. Embedded FBG sensors had good fracture strain and reliability. Therefore, critical damage can be detected by the ply stress states which are close to the boundaries of failure criteria.


2018 ◽  
Vol 92 (3) ◽  
pp. 355-367
Author(s):  
Cansu Karatas ◽  
Boray Degerliyurt ◽  
Yavuz Yaman ◽  
Melin Sahin

Purpose Structural health monitoring (SHM) has become an attractive subject in aerospace engineering field considering the opportunity to avoid catastrophic failures by detecting damage in advance and to reduce maintenance costs. Fibre Bragg Grating (FBG) sensors are denoted as one of the most promising sensors for SHM applications as they are lightweight, immune to electromagnetic effects and able to be embedded between the layers of composite structures. The purpose of this paper is to research on and demonstrate the feasibility of FBG sensors for SHM of composite structures. Design/methodology/approach Applications on thin composite beams intended for SHM studies are presented. The sensor system, which includes FBG sensors and related interrogator system, and manufacturing of the beams with embedded sensors, are detailed. Static tension and torsion tests are conducted to verify the effectiveness of the system. Strain analysis results obtained from the tests are compared with the ones obtained from the finite element analyses conducted using ABAQUS® software. In addition, the comparison between the data obtained from the FBG sensors and from the strain gauges is made by also considering the noise content. Finally, fatigue test under torsion load is conducted to observe the durability of FBG sensors. Findings The results demonstrated that FBG sensors are feasible for SHM of composite structures as the strain data are accurate and less noisy compared to that obtained from the strain gauges. Furthermore, the convenience of obtaining reliable data between the layers of a composite structure using embedded FBG sensors is observed. Practical implications Observing the advantages of the FBG sensors for strain measurement will promote using FBG sensors for damage detection related to the SHM applications. Originality/value This paper presents applications of FBG sensors on thin composite beams, which reveal the suitability of FBG sensors for SHM of lightweight composite structures.


Sign in / Sign up

Export Citation Format

Share Document