scholarly journals Relationship between Extreme Precipitation and Temperature in Two Different Regions: The Tibetan Plateau and Middle-East China

2019 ◽  
Vol 33 (5) ◽  
pp. 870-884
Author(s):  
Rui Wang ◽  
Tao Xian ◽  
Mengxiao Wang ◽  
Fengjiao Chen ◽  
Yuanjian Yang ◽  
...  
Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1453 ◽  
Author(s):  
Junnan Xiong ◽  
Zhiwei Yong ◽  
Zegen Wang ◽  
Weiming Cheng ◽  
Yi Li ◽  
...  

The Tibetan Plateau is one of the most vulnerable areas to extreme precipitation. In recent decades, water cycles have accelerated, and the temporal and spatial characteristics of extreme precipitation have undergone dramatic changes across the Tibetan Plateau, especially in its various ecosystems. However, there are few studies that considered the variation of extreme precipitation in various ecosystems, and the impact of El Niño-Southern Oscillation (ENSO), and few researchers have made a quantitative analysis between them. In this study, we analyzed the spatial and temporal pattern of 10 extreme precipitation indices across the Tibetan Plateau (including its four main ecosystems: Forest, alpine meadow, alpine steppe, and desert steppe) based on daily precipitation from 76 meteorological stations over the past 30 years. We used the linear least squares method and Pearson correlation coefficient to examine variation magnitudes of 10 extreme precipitation indices and correlation. Temporal pattern indicated that consecutive wet days (CWD) had a slightly decreasing trend (slope = −0.006), consecutive dry days (CDD), simple daily intensity (SDII), and extreme wet day precipitation (R99) displayed significant increasing trends, while the trends of other indices were not significant. For spatial patterns, the increasing trends of nine extreme precipitation indices (excluding CDD) occurred in the southwestern, middle and northern regions of the Tibetan Plateau; decreasing trends were distributed in the southeastern region, while the spatial pattern of CDD showed the opposite distribution. As to the four different ecosystems, the number of moderate precipitation days (R10mm), number of heavy precipitation days (R20mm), wet day precipitation (PRCPTOT), and very wet day precipitation (R95) in forest ecosystems showed decreasing trends, but CDD exhibited a significant increasing trend (slope = 0.625, P < 0.05). In the other three ecosystems, all extreme precipitation indices generally exhibited increasing trends, except for CWD in alpine meadow (slope = −0.001) and desert steppe (slope = −0.005). Furthermore, the crossover wavelet transform indicated that the ENSO had a 4-year resonance cycle with R95, SDII, R20mm, and CWD. These results provided additional evidence that ENSO play an important remote driver for extreme precipitation variation in the Tibetan Plateau.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 620
Author(s):  
Jin Ding ◽  
Lan Cuo ◽  
Yongxin Zhang ◽  
Cunjie Zhang ◽  
Liqiao Liang ◽  
...  

Based on daily precipitation data from 115 climate stations, seasonal and annual precipitation and their extremes over the Tibetan Plateau and its surroundings (TPS) in 1963–2015 are investigated. There exists a clear southeast-northwest gradient in precipitation and extreme daily precipitation but an opposite pattern for the consecutive dry days (CDDs). The wet southeast is trending dry while the dry center and northwest are trending wet in 1963–2015. Correspondingly, there is a drying tendency over the wet basins in the southeast and a wetting tendency over the dry and semi-dry basins in the center and northwest in summer, which will affect the water resources in the corresponding areas. The increase (decrease) in precipitation tends to correspond to the increase (decrease) in maximum daily precipitation but the decrease (increase) in CDDs. Extreme precipitation events with 20-year, 50-year, 100-year, and 200-year recurrence occurred frequently in the past decades especially in the 1980s. The greatest extreme precipitation events tend to occur after the late 1990s and in the southeastern TPS. The ERA5 reanalysis and climate system indices reveal that (1) decreased moisture transports to the southeast in summer due to the weakening of the summer monsoons and the East Asian westerly jet; (2) increased moisture transports to the center in winter due to the strengthening of the winter westerly jet and north Atlantic oscillation; and (3) decreased instability over the southeast thus suppressing precipitation and increased instability over the northwest thus promoting precipitation. All these are conducive to the drying trends in the southeast and the wetting trends in the center.


2021 ◽  
Author(s):  
Qing Bao ◽  
Lei Wang ◽  
Yimin Liu ◽  
Guoxiong Wu ◽  
Jinxiao Li ◽  
...  

&lt;p&gt;Extreme precipitation events, represented by the extreme hourly precipitation (EHP), often occur in the Tibetan Plateau and surrounding areas (TPS) as a result of the complex topography and unique geographical location of this region and can lead to large losses of human life. Previous studies have shown that the performance of extreme precipitation simulations can be improved by increasing the resolution of the model, although the mechanisms are not yet not clear. In this study, we firstly compared the most recent high-quality satellite precipitation product &amp;#160;with station data from Nepal, which is located on the southern edge of the Tibetan Plateau. The results showed that the GPM dataset can reproduce extreme precipitation well and we therefore used these data as a benchmark for climate models of the TPS. We then evaluated the fidelity of global climate models in the representation of the boreal summer EHP in the TPS using datasets from the CMIP6 High-Resolution Model Intercomparison Project (HighResMIP). We used four global climate models with standard (about 100 km) and enhanced (up to 25 km) resolution configurations to simulate the EHP. The models with a standard resolution largely underestimated the intensity of EHP, especially over the southern edge of the Tibetan Plateau. The EHP can reach up to 50 mm h&lt;sup&gt;&amp;#8722;1&lt;/sup&gt;in the TPS, whereas the maximum simulated EHP was &lt;35 mm h&lt;sup&gt;&amp;#8722;1&lt;/sup&gt; for all the standard resolution models. The mean intensity of EHP is about 5.06 mm h&lt;sup&gt;&amp;#8722;1&lt;/sup&gt; in the GPM satellite products, whereas it was &lt;3 mm h&lt;sup&gt;&amp;#8722;1&lt;/sup&gt; in standard resolution models. The skill of the simulation of EHP is significantly improved at increased horizontal resolutions. The high-resolution models with a horizontal resolution of 25 km can reproduce the geographical distribution of the intensity of EHP in the TPS. The intensity&amp;#8211;frequency distribution of EHP also resembles that from GPM products, showing the same features up to 50 mm h&lt;sup&gt;&amp;#8722;1&lt;/sup&gt;, although it slightly overestimates heavy precipitation events. Finally, we propose possible physical linkages between the simulation of EHP and the impacts of the resolution of the model and physical processes. Phenomena over the Indian Ocean at different timescales and the diurnal variation of precipitation in the TPS are used to propose possible physical linkages as they may play an important part in the simulation of EHP in the TPS. Further analysis shows that an increase in the horizontal resolution helps to accurately reproduce the features of water vapor transport on days with extreme precipitation, the northward-propagating intraseasonal oscillation over the Indian and western Pacific Ocean monsoon regions in the boreal summer, the intensity and number of tropical cyclones over the southern Asian monsoon regions, and the peak time and amplitude of the diurnal cycle of precipitation. This increase in accuracy contributes to the improvements in the simulation of EHP in the TPS. This study suggests improvements to increase the horizontal resolution of the GCMs and lay a solid foundation for the accurate reproduction and prediction of EHP in the TPS.&lt;/p&gt;


2020 ◽  
Author(s):  
Zhiyuan Hu ◽  
Jianping Huang ◽  
Chun Zhao ◽  
Qinjian Jin ◽  
Yuanyuan Ma ◽  
...  

&lt;p&gt;Mineral dust plays an important role in the climate of the Tibetan Plateau (TP) by modifying the radiation budget, cloud macro- and microphysics, precipitation, and snow albedo. Meanwhile, the TP with the highest topography in the word can affect intercontinental transport of dust plumes and induce typical distribution characteristics of dust at different altitudes. In this study, we conduct a quasi-global simulation to investigate the characteristics of dust source contribution and transport over the TP at different altitude by using a fully coupled meteorology-chemistry model (WRF-Chem) with a tracer-tagging technique. Generally, the simulation reasonably captures the spatial distribution of satellite retrieved dust aerosol optical depth (AOD) at different altitudes. Model results show that dust particles are emitted into atmosphere through updrafts over major desert regions, and then transported to the TP. The East Asian dust (mainly from Gobi and Taklamakan deserts) transports southward and is lifted up to the TP, contributing a mass loading of 50 mg/m&lt;sup&gt;2&lt;/sup&gt; at 3 km height and 5 mg/m&lt;sup&gt;2&lt;/sup&gt; at 12 km height over the northern slop of the TP. Dust from North Africa and Middle East are concentrated over both northern and southern slopes below 6 km, where mass loadings range from 10 to 100mg/m&lt;sup&gt;2&lt;/sup&gt; and 1 to 10 mg/m&lt;sup&gt;2&lt;/sup&gt; below 3 km and above 9 km, respectively. As the dust is transported to the north and over the TP, mass loadings are 5-10 mg/m&lt;sup&gt;2&lt;/sup&gt; above 6 km.&lt;/p&gt;&lt;p&gt;The imported dust mass flux from East Asia to the TP is 7.9 Tg/year mostly occuring at the heights of 3&amp;#8211;6 km. The North African and Middle East dust particles are transported eastward following the westerly jet, and then imported into the TP at West side with the dust mass flux of 7.8 and 26.6 Tg/year, respectively. The maximum mass flux of the North African dust mainly occurs in 0&amp;#8211;3 km (3.9 Tg/year), while the Middle East within 6&amp;#8211;9 km (12.3 Tg/year). The dust outflow occurs at East side (&amp;#8211;17.89 Tg/year) and South side (&amp;#8211;11.22 Tg/year) of the TP with a peak value (8.7 Tg/year) in 6&amp;#8211;9 km . Moreover, the dust mass is within the size range of 1.25~5.0&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document