Performance Characteristics and Emission Formations of a Spark Ignition (SI) Engine Fueled with Different Gaseous Fuels

2017 ◽  
Vol 43 (9) ◽  
pp. 4487-4499 ◽  
Author(s):  
Guven Gonca ◽  
Mehmet Cakir ◽  
Bahri Sahin
Author(s):  
Guillaume Brecq ◽  
Camal Rahmouni ◽  
Abdellilah Taouri ◽  
Mohand Tazerout ◽  
Olivier Le Corre

Experimental investigations on the knock rating of gaseous fuels were carried out on a single cylinder SI engine of Lister-Petter make. The Service Methane Number (SMN) of different gas compositions is measured and then compared to the standard Methane Number (MN), calculated by the AVL software. Effects of engine parameters, by mean of the Methane Number Requirement (MNR) are also highlighted. A linear correlation, between the SMN and the MN, has been obtained with a maximum absolute deviation lower than 2 MN units. A prediction correlation giving the MNR from engine parameters has finally been deduced from experimental data with a good accuracy (mean absolute deviation of 0.5 MNR unit).


Author(s):  
V. Matham ◽  
K. Majmudar ◽  
K. Aung

The use of alternative fuels such as natural gas (methane) in spark-ignition (SI) engines is beneficial to the environment as it reduces emissions of pollutants such as NOx from these engines with slight penalty on the performance. This paper investigated the use of methane and hydrogen/methane mixtures in an SI engine by numerical simulations. The numerical simulations were based on the models of finite heat release, cylinder heat transfer, pumping losses, and friction losses. Simulations were carried out to evaluate the effects of compression ratio, equivalence ratio, ignition timing, and engine speed on the performance of the SI engine. The results showed that the current model could satisfactorily predict the performance of an SI engine fueled by gaseous fuels.


2004 ◽  
Vol 26 (2) ◽  
pp. 83-92
Author(s):  
Bui Van Ga ◽  
Phung Xuan Tho ◽  
Nhan Hong Quang ◽  
Nguyen Huu Huong

A phenomenological model has been established to predict the velocity distribution of LPG (Liquefied Petroleum Gas) jet in combustion chamber of spark ignition (SI) engine. A shaped coefficient \(\beta\) governing the similarity of velocity profiles of LPG jets has been defined based on the theoretical and experimental analyses of turbulent diffusion jets. The results show that \(\beta\) is constant for steady jet but it is not the case for unsteady one. The model will enable us to calculate the velocity profiles of LPG jet after ending injection. This is necessary for research of stratified combustion in direct injection LPG SI engines.


2013 ◽  
Author(s):  
Olivier Laget ◽  
Laëtitia Muller ◽  
Karine Truffin ◽  
Julian Kashdan ◽  
Rajesh Kumar ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5223
Author(s):  
Guanting Li ◽  
Xiumin Yu ◽  
Ping Sun ◽  
Decheng Li

Split hydrogen direct injection (SHDI) has been proved capable of better efficiency and fewer emissions. Therefore, to investigate SHDI deeply, a numerical study on the effect of second injection timing was presented at a gasoline/hydrogen spark ignition (SI) engine with SHDI. With an excess air ratio of 1.5, five different second injection timings achieved five kinds of hydrogen mixture distribution (HMD), which was the main factor affecting the engine performances. With SHDI, since the HMD is manageable, the engine can achieve better efficiency and fewer emissions. When the second injection timing was 105° crank angle (CA) before top dead center (BTDC), the Pmax was the highest and the position of the Pmax was the earliest. Compared with the single hydrogen direct injection (HDI), the NOX, CO and HC emissions with SHDI were reduced by 20%, 40% and 72% respectively.


2017 ◽  
Vol 57 (1) ◽  
pp. 38-48 ◽  
Author(s):  
Rastislav Toman ◽  
Marián Polóni ◽  
Andrej Chríbik

This paper presents a numerical study on a group of alternative gaseous fuels – syngases, and their use in the spark-ignition internal combustion engine Lombardini LGW 702. These syngas fuel mixtures consist mainly of hydrogen and carbon monoxide, together with inert gases. An understanding of the impact of the syngas composition on the nature of the combustion process is essential for the improvement of the thermal efficiency of syngas-fuelled engines. The paper focuses on six different syngas mixtures with natural gas as a reference. The introduction of the paper goes through some recent trends in the field of the alternative gaseous fuels, followed by a discussion of the objectives of our work, together with the selection of mixtures. Important part of the paper is dedicated to the experimental and above all to the numerical methods. Two different simulation models are showcased: the single-cylinder ‘closed-volume’ combustion analysis model and the full-scale LGW 702 model; all prepared and tuned with the GT-Power software. Steady-state engine measurements are followed by the combustion analysis, which is undertaken to obtain the burn rate profiles. The burn rate profiles, in the form of the Vibe formula, are than inserted into the in-house developed empirical combustion model based on Csallner-Woschni recalculation formulas. Its development is described in the scope as well. The full-scale LGW 702 simulation model, together with this empirical combustion model, is used for the evaluation of engine overall performance parameters, running on gaseous fuel mixtures. The analysis was carried out only under the conditions of engine on full load and the stoichiometric mixture.


Sign in / Sign up

Export Citation Format

Share Document