scholarly journals PRELIMINARY STUDY ON COMBUSTION AND OVERALL PARAMETERS OF SYNGAS FUEL MIXTURES FOR SPARK IGNITION COMBUSTION ENGINE

2017 ◽  
Vol 57 (1) ◽  
pp. 38-48 ◽  
Author(s):  
Rastislav Toman ◽  
Marián Polóni ◽  
Andrej Chríbik

This paper presents a numerical study on a group of alternative gaseous fuels – syngases, and their use in the spark-ignition internal combustion engine Lombardini LGW 702. These syngas fuel mixtures consist mainly of hydrogen and carbon monoxide, together with inert gases. An understanding of the impact of the syngas composition on the nature of the combustion process is essential for the improvement of the thermal efficiency of syngas-fuelled engines. The paper focuses on six different syngas mixtures with natural gas as a reference. The introduction of the paper goes through some recent trends in the field of the alternative gaseous fuels, followed by a discussion of the objectives of our work, together with the selection of mixtures. Important part of the paper is dedicated to the experimental and above all to the numerical methods. Two different simulation models are showcased: the single-cylinder ‘closed-volume’ combustion analysis model and the full-scale LGW 702 model; all prepared and tuned with the GT-Power software. Steady-state engine measurements are followed by the combustion analysis, which is undertaken to obtain the burn rate profiles. The burn rate profiles, in the form of the Vibe formula, are than inserted into the in-house developed empirical combustion model based on Csallner-Woschni recalculation formulas. Its development is described in the scope as well. The full-scale LGW 702 simulation model, together with this empirical combustion model, is used for the evaluation of engine overall performance parameters, running on gaseous fuel mixtures. The analysis was carried out only under the conditions of engine on full load and the stoichiometric mixture.

2013 ◽  
Author(s):  
Jorge Duarte Forero ◽  
German Amador Diaz ◽  
Fabio Blanco Castillo ◽  
Lesme Corredor Martinez ◽  
Ricardo Vasquez Padilla

In this paper, a mathematical model is performed in order to analyze the effect of the methane number (MN) on knock tendency when spark ignition internal combustion engine operate with gaseous fuels produced from different thermochemical processes. The model was validated with experimental data reported in literature and the results were satisfactory. A general correlation for estimating the autoignition time of gaseous fuels in function of cylinder temperature, and pressure, equivalence ratio and methane number of the fuel was carried out. Livengood and Wu correlation is used to predict autoignition in function of the crank angle. This criterium is a way to predict the autoignition tendency of a fuel/air mixture under engine conditions and consider the ignition delay. A chemical equilibrium model which considers 98 chemical species was used in this research in order to simulate the combustion of the gaseous fuels at differents engine operating conditions. The effect of spark advance, equivalence ratio, methane number (MN), charge (inlet pressure) and inlet temperature (manifold temperature) on engine knocking is evaluated. This work, explore the feasibility of using syngas with low methane number as fuel for commercial internal combustion engines.


Author(s):  
Timothy J. Jacobs ◽  
Louis J. Camilli ◽  
Joseph E. Gonnella

This article describes a study involving new spark plug technology, referred to as pulsed energy spark plug, for use in igniting fuel-air mixtures in a spark ignition internal combustion engine. The study involves precisely controlled constant volume combustion bomb tests. The major defining difference between the pulsed energy spark plug and a conventional spark plug is a peaking capacitor that improves the electrical-to-plasma energy transfer efficiency from a conventional plug’s 1% to the pulsed energy plug’s 50%. Such an increase in transfer efficiency is believed to improve spark energy and subsequently the ignition time and burn rate of a homogeneous, or potentially stratified, fuel-air mixture. The study observes the pulsed energy plug to shorten the ignition delay of both stoichiometric and lean mixtures (with equivalence ratio of 0.8), relative to a conventional spark plug, without increasing the burn rate. Additionally, the pulsed energy plug demonstrates a decreased lean flammability limit that is about 14% lower (0.76 for conventional plug and 0.65 for pulsed energy plug) than that of the conventional spark plug. These features — advanced ignition of stoichiometric and lean mixtures and decreased lean flammability limits — might qualify the pulsed energy plugs as an enabling technology to effect the mainstream deployment of advanced, ultra-clean and ultra-efficient, spark ignition internal combustion engines. For example, the pulsed energy plug may improve ignition of stratified-GDI engines. Further, the pulsed energy plug technology may improve the attainability of lean-burn homogeneous charge compression ignition combustion by improving the capabilities of spark-assist. Finally, the pulsed energy plug could improve natural gas spark ignition engine development by improving the ignition system. Future work could center efforts on evaluating this spark plug technology in the context of advanced internal combustion engines, to transition the state of the art to the next level.


Author(s):  
Suleyman Simsek ◽  
Samet Uslu ◽  
Hatice Simsek

The major aim of the research is to investigate the ability of biogas as an alternative fuel for gasoline-powered Spark Ignition (SI) engine. In this study, biogas/gasoline fuel mixtures containing different ratios of biogas, gasoline, and biogas were tested in an SI engine with an increased compression ratio at different engine loads and constant engine speed. According to the comparison with gasoline, the utilization of biogas generally decreased the Brake Thermal Efficiency (BTE), while the Brake Specific Fuel Consumption (BSFC) rose. The lowest BTE and the highest BSFC were obtained with 100% biogas. Compared to gasoline, a decrease of 16.04% and an increase of 75.52% were observed, respectively. On the other hand, the use of biogas has improved all emissions. The best emission values were obtained with 100% biogas. Compared to gasoline, Carbon monoxide (CO), HydroCarbon (HC), and Nitrogen Oxide (NOx) emissions decreased by 56.42%, 63%, and 48.96%, respectively. Finally, according to the results of the combustion analysis, the peak pressures were reduced with the utilization of biogas, and the position of the peak pressure shifted by 2° to 3° Crank Angle (CA). Compared to gasoline, the lowest pressure was obtained with 100% biogas, resulting in a reduction of approximately 24.69%.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Iolanda Stocchi ◽  
Jinlong Liu ◽  
Cosmin Emil Dumitrescu ◽  
Michele Battistoni ◽  
Carlo Nazareno Grimaldi

Three-dimensional computational fluid dynamics internal combustion engine simulations that use a simplified combustion model based on the flamelet concept provide acceptable results with minimum computational costs and reasonable running times. Moreover, the simulation can neglect small combustion chamber details such as valve crevices, valve recesses, and piston crevices volume. The missing volumes are usually compensated by changes in the squish volume (i.e., by increasing the clearance height of the model compared to the real engine). This paper documents some of the effects that such an approach would have on the simulated results of the combustion phenomena inside a conventional heavy-duty direct injection compression-ignition engine, which was converted to port fuel injection spark ignition operation. Numerical engine simulations with or without crevice volumes were run using the G-equation combustion model. A proper parameter choice ensured that the numerical results agreed well with the experimental pressure trace and the heat release rate. The results show that including the crevice volume affected the mass of a unburned mixture inside the squish region, which in turn influenced the flame behavior and heat release during late-combustion stages.


2020 ◽  
Vol 70 (2) ◽  
pp. 37-48
Author(s):  
Chríbik Andrej ◽  
Polóni Marián ◽  
Minárik Matej

AbstractThe presented article deals with the use of methane-free synthesis gases in a spark-ignition internal combustion engine. The authors analyse the influence of seven synthesis gases on integral as well as internal parameters of the engine and make comparisons with operation on methane. The main combustible components of the synthesis gas are hydrogen and carbon monoxide and the remainder are inert gases (nitrogen and carbon dioxide). At the operating speed of the combustion engine of 1500 rpm, at which the cogeneration unit operates, in comparison with methane a decrease in power parameters was recorded in the range from 19 to 35%. The increase in the hourly fuel consumption was 6 to 8 times higher. Depending on the gas composition, the optimum start of ignition angle at full load ranged from 17 to 26 °CA BTDC. In terms of analysis of internal parameters, the cyclic variability of the pressure in the engine cylinder, which characterizes the stability of its operation, was in synthesis gases operation mostly at a lower level (from 3.6% to 6.9%) than in methane operation (6.8%). Due to the presence of hydrogen, the main combustion time interval of all synthesis gases has been shorter compared to methane. The presented results serve to better understand the setting of the waste gasification process so that the highest possible energy and economic recovery in the cogeneration unit is obtained.


2013 ◽  
Vol 185 (8) ◽  
pp. 1151-1168 ◽  
Author(s):  
Payman Abbasi Atibeh ◽  
Michael J. Brear ◽  
Peter A. Dennis ◽  
Pedro J. Orbaiz ◽  
Harry C. Watson

Author(s):  
Jonathan Hogan Webb

The design of a free piston compressor and an analysis on integrating an external combustion engine into the compressor design are presented in this article. A free piston compressor is a device which converts chemical energy to work on a volume of air through the kinetic energy of an inertia driven piston, which is not rigidly attached to a ground. An external combustion engine serves as in intermediate chamber which transfers combustion gases to a device to perform some work. The following discusses the design and experiments on an external combustion engine, with a focus on eliminating an injection holding force on a free piston compressor’s elastomeric membranes. The efficiency of the external combustion engine to transfer energy without significant losses due to heat, dead volume, air/fuel mixtures, and actuated valve speed are also presented.


Sign in / Sign up

Export Citation Format

Share Document