scholarly journals Phenomenological model for determining velocity field of LPG jet in combustion chamber of direct injection S.I. engine

2004 ◽  
Vol 26 (2) ◽  
pp. 83-92
Author(s):  
Bui Van Ga ◽  
Phung Xuan Tho ◽  
Nhan Hong Quang ◽  
Nguyen Huu Huong

A phenomenological model has been established to predict the velocity distribution of LPG (Liquefied Petroleum Gas) jet in combustion chamber of spark ignition (SI) engine. A shaped coefficient \(\beta\) governing the similarity of velocity profiles of LPG jets has been defined based on the theoretical and experimental analyses of turbulent diffusion jets. The results show that \(\beta\) is constant for steady jet but it is not the case for unsteady one. The model will enable us to calculate the velocity profiles of LPG jet after ending injection. This is necessary for research of stratified combustion in direct injection LPG SI engines.

2002 ◽  
Vol 24 (4) ◽  
pp. 209-218
Author(s):  
Bui Van Ga ◽  
Duong Viet Dung ◽  
Tran Van Nam

Based on the mathematical validated by experimental data, the present paper introduces the evolution of concentration and velocity fields of Liquefield Petroleum Gas (LPG) jet in combustion chamber of spark ingnition enegine under effects of injection conditions and surrounding environment. The results allow us to predict the development of jet for an efficient organization of mixture preparation and combustion process in LPG direct injection spark ignition engine


2021 ◽  
pp. 146808742110050
Author(s):  
Stefania Esposito ◽  
Lutz Diekhoff ◽  
Stefan Pischinger

With the further tightening of emission regulations and the introduction of real driving emission tests (RDE), the simulative prediction of emissions is becoming increasingly important for the development of future low-emission internal combustion engines. In this context, gas-exchange simulation can be used as a powerful tool for the evaluation of new design concepts. However, the simplified description of the combustion chamber can make the prediction of complex in-cylinder phenomena like emission formation quite challenging. The present work focuses on the prediction of gaseous pollutants from a spark-ignition (SI) direct injection (DI) engine with 1D–0D gas-exchange simulations. The accuracy of the simulative prediction regarding gaseous pollutant emissions is assessed based on the comparison with measurement data obtained with a research single cylinder engine (SCE). Multiple variations of engine operating parameters – for example, load, speed, air-to-fuel ratio, valve timing – are taken into account to verify the predictivity of the simulation toward changing engine operating conditions. Regarding the unburned hydrocarbon (HC) emissions, phenomenological models are used to estimate the contribution of the piston top-land crevice as well as flame wall-quenching and oil-film fuel adsorption-desorption mechanisms. Regarding CO and NO emissions, multiple approaches to describe the burned zone kinetics in combination with a two-zone 0D combustion chamber model are evaluated. In particular, calculations with reduced reaction kinetics are compared with simplified kinetic descriptions. At engine warm operation, the HC models show an accuracy mainly within 20%. The predictions for the NO emissions follow the trend of the measurements with changing engine operating parameters and all modeled results are mainly within ±20%. Regarding CO emissions, the simplified kinetic models are not capable to predict CO at stoichiometric conditions with errors below 30%. With the usage of a reduced kinetic mechanism, a better prediction capability of CO at stoichiometric air-to-fuel ratio could be achieved.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5223
Author(s):  
Guanting Li ◽  
Xiumin Yu ◽  
Ping Sun ◽  
Decheng Li

Split hydrogen direct injection (SHDI) has been proved capable of better efficiency and fewer emissions. Therefore, to investigate SHDI deeply, a numerical study on the effect of second injection timing was presented at a gasoline/hydrogen spark ignition (SI) engine with SHDI. With an excess air ratio of 1.5, five different second injection timings achieved five kinds of hydrogen mixture distribution (HMD), which was the main factor affecting the engine performances. With SHDI, since the HMD is manageable, the engine can achieve better efficiency and fewer emissions. When the second injection timing was 105° crank angle (CA) before top dead center (BTDC), the Pmax was the highest and the position of the Pmax was the earliest. Compared with the single hydrogen direct injection (HDI), the NOX, CO and HC emissions with SHDI were reduced by 20%, 40% and 72% respectively.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rui Liu ◽  
Haocheng Ji ◽  
Minxiang Wei

Purpose The purpose of this paper is to investigate power performance, economy and hydrocarbons (HC)/carbon monoxide (CO) emissions of diesel fuel on a two-stoke direct injection (DI) spark ignition (SI) engine. Design/methodology/approach Experimental study was carried out on a two-stroke SI diesel-fuelled engine with air-assisted direct injection, whose power performance and HC/CO emissions characteristics under low-load conditions were analysed according to the effects of ignition energy, ignition advance angle (IAA), injection timing angle and excess-air-ratio. Findings The results indicate that, for the throttle position of 10%, a large IAA with adequate ignition energy effectively increases the power and decrease the HC emission. The optimal injection timing angle for power and fuel consumption is 60° crank angle (CA) before top dead centre (BTDC). Lean mixture improves the power performance with the HC/CO emissions greatly reduced. At the throttle position of 20%, the optimal IAA is 30°CA BTDC. The adequate ignition energy slightly improves the power output and greatly decreases HC/CO emissions. Advancing the injection timing improves the power and fuel consumption but should not exceed the exhaust port closing timing in case of scavenging losses. Burning stoichiometric mixture achieves maximum power, whereas burning lean mixture obviously reduces the fuel consumption and the HC/CO emissions. Practical implications Gasoline has a low flash point, a high-saturated vapour pressure and relatively high volatility, and it is a potential hazard near a naked flame at room temperature, which can create significant security risks for its storage, transport and use. The authors adopt a low volatility diesel fuel for all vehicles and equipment to minimise the number of different devices using various fuels and improve the potential military application safety. Originality/value Under low-load conditions, the two stroke port-injected SI engine performance of burning heavy fuels including diesel or kerosene was shown to be worse than those of gasoline. The authors have tried to use the DI method to improve the performance of the diesel-fuelled engine in starting and low-load conditions.


Author(s):  
Hailin Li ◽  
Ghazi A. Karim ◽  
A. Sohrabi

The operation of spark ignition (SI) engines on lean mixtures is attractive, in principle, since it can provide improved fuel economy, reduced tendency to knock, and extremely low NOx emissions. However, the associated flame propagation rates become degraded significantly and drop sharply as the operating mixture is made increasingly leaner. Consequently, there exist distinct operational lean mixture limits beyond which satisfactory engine performance cannot be maintained due to the resulting prolonged and unstable combustion processes. This paper presents experimental data obtained in a single cylinder, variable compression ratio, SI engine when operated in turn on methane, hydrogen, carbon monoxide, gasoline, iso-octane, and some of their binary mixtures. A quantitative approach for determining the operational limits of SI engines is proposed. The lean limits thus derived are compared and validated against the corresponding experimental results obtained using more traditional approaches. On this basis, the dependence of the values of the lean mixture operational limits on the composition of the fuel mixtures is investigated and discussed. The operational limit for throttled operation with methane as the fuel is also established.


2013 ◽  
Vol 17 (1) ◽  
pp. 119-133 ◽  
Author(s):  
Jovan Doric ◽  
Ivan Klinar

A zero dimensional model has been used to investigate the combustion performance of a four cylinder petrol engine with unconventional piston motion. The main feature of this new spark ignition (SI) engine concept is the realization of quasi-constant volume (QCV) during combustion process. Presented mechanism is designed to obtain a specific motion law which provides better fuel consumption of internal combustion (IC) engines. These advantages over standard engine are achieved through synthesis of unconventional piston mechanism. The numerical calculation was performed for several cases of different piston mechanism parameters, compression ratio and engine speed. Calculated efficiency and power diagrams are plotted and compared with performance of ordinary SI engine. The results show that combustion during quasi-constant volume has significant impact on improvement of efficiency. The main aim of this paper is to find a proper kinematics parameter of unconventional piston mechanism for most efficient heat addition in SI engines.


2019 ◽  
Vol 2 (1) ◽  
pp. 22-27 ◽  
Author(s):  
Bagiyo Condro Purnomo ◽  
Noto Widodo

Liquefied Petroleum Gas (LPG) is an alternative fuel that has all key properties for the Spark Ignition (SI) engine. However, because of its properties, ignition timing on an LPG SI engine needs to be advanced from the reference angle to get the optimum performance. Therefore, this article presents the torque and power characteristics of a single piston LPG engine on variations of ignition timing. Evaluation of engine performance is carried out at the ignition timing of 15O, 17O, and 19O BTDC. The results showed the highest torque for LPG fuel was 10.64 Nm which was achieved at 3500 rpm with ignition timing of 19O BTDC, while the highest power for LPG fuel was 6.9 hp which was achieved at 5936 rpm with ignition timing of 19O BTDC.


2003 ◽  
Author(s):  
K. Majmudar ◽  
K. Aung

The use of alternative fuels such as methanol and ethanol in spark-ignition (SI) engines is beneficial to the environment as it reduces emissions of pollutants such as NOx from these engines with slight penalty on the performance. This paper investigated the use of liquid fuel blends such as ethanol/gasoline blend in an SI engine by numerical simulations. The numerical simulations were based on the models of finite heat release, cylinder heat transfer, pumping losses, and friction losses. Simulations were carried out to evaluate the effects of compression ratio, equivalence ratio, ignition timing, and engine speed on the performance of the SI engine. The results of the simulations were compared with experimental data from the literature to validate the simulations. Good agreements between the computed and experimental results were obtained. The results showed that the current model could satisfactorily predict the performance of an SI engine fueled by liquid fuel blends.


Sign in / Sign up

Export Citation Format

Share Document