A Computational Fluid Dynamics Study of Liquid–Solid Nano-fluid Flow in Horizontal Pipe

Author(s):  
Zainab Yousif Shnain ◽  
Jamal M. Ali ◽  
Khalid A. Sukkar ◽  
May Ali Alsaffar ◽  
Mohammad F. Abid
2011 ◽  
Vol 140 ◽  
pp. 195-199 ◽  
Author(s):  
Jin You YANG ◽  
Yang Hong

The method that combined the reverse engineering based on CT medical images and computational fluid dynamics (CFD) was used to perform simulation the Non-Newtonian blood fluid flow in human abdominal artery, then analyzed the hemodynamic condition about the bifurcation of human abdominal artery. A Non-Newtonian blood model (the Generalised Power Law) was used to study the hemodynamic parameters during entire cardiac cycle. Calculated results for the Non-Newtonian blood flow show us the methods performed in this study is suitable for numerical simulating the blood flow in human artery and investigating the relation between hemodynamic factors and vascular disease.


2017 ◽  
Vol 30 (1&2) ◽  
pp. 1-16 ◽  
Author(s):  
N. Z. Aung ◽  
T. Yuwono

Having a clear understanding on the phase distribution of gas-liquid two-phase flow through elbow bends is vital in mixing and separation system designs. This paper presents the computational fluid dynamics (CFD) simulations and experimental observations of gas-liquid two-phase flow pattern characteristic through a vertical to horizontal right angled (90°) elbow. Experimental observations were conducted in a transparent test section that consisted of a vertical pipe, elbow bend and horizontal pipe with an inside diameter of 0.036 m. The CFD simulations were performed by using a computer software package, FLUENT 6.2. Bubbly flow conditions were created in the vertical test section with the variation of superficial liquid Reynolds number from 13 497 to 49 488 and volumetric gas quality from 0.05 to 0.2. The CFD results showed a good agreement with experimental results in the following observations. The results showed that gas-liquid flow pattern inside and downstream of the elbow bend mainly depended on liquid velocity and it is also influenced by gas quality at high liquid velocities. At lower liquid velocities, gas-liquid separation began early in the elbow bend and gas-phase migrated to outer bend. Then, it smoothly transformed to stratified flow at elbow outlet. When the liquid velocity was further increased, the liquid phase occupied the outer bend rubbing the gas phase to the inner bend and delayed the formation of gas layer in the horizontal pipe. The increase of gas quality in higher liquid velocities promoted gas core formation at the elbow exit and caused wavy gas layers at the downstream of the elbow.


2000 ◽  
Author(s):  
James M. Sorokes ◽  
Bradley R. Hutchinson

Abstract In the development of industrial turbomachinery, the aerodynamic designer is faced with many complex fluid flow problems. In the mid to late 1980’s, Computational Fluid Dynamics (CFD) software was developed to assist in the solution of these flow fields. Initially applied only by high end gas turbine or jet engine designers, these sophisticated tools eventually found their way to engineers at industrial turbomachinery manufacturers. However, it has only been in the last five to ten years that industrial users have begun to make more widespread use of CFD. There are a variety of reasons for this slow adoption.


Sign in / Sign up

Export Citation Format

Share Document