Application of Computational Fluid Dynamics to Closed-Loop Bioreactors: I. Characterization and Simulation of Fluid-Flow Pattern and Oxygen Transfer

2007 ◽  
Vol 79 (6) ◽  
pp. 600-612 ◽  
Author(s):  
Helen X. Littleton ◽  
Glen T. Daigger ◽  
Peter F. Strom
Author(s):  
Zainab Yousif Shnain ◽  
Jamal M. Ali ◽  
Khalid A. Sukkar ◽  
May Ali Alsaffar ◽  
Mohammad F. Abid

2021 ◽  
Author(s):  
Darren Jia

Diabolo is a popular game in which the object can be spun at up to speeds of 5000 rpm. This high spin velocity gives the diabolo the necessary angular momentum to remain stable. The shape of the diabolo generates an interesting air flow pattern. The viscous air applies a resistive torque on the fast spinning diabolo. Through computational fluid dynamics (CFD) simulations it's shown that the resistive torque has an interesting dependence on the angular speed of the diabolo. Further, the geometric shape of the diabolo affects the dependence of torque on angular speed.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 41
Author(s):  
Siong Lee ◽  
Thomas Choong ◽  
Luqman Abdullah ◽  
Mus’ab Abdul Razak ◽  
Zhen Ban

For a gas-liquid separator sizing, many engineers have neglected the flow pattern of incoming fluids. The impact of inlet slug flow which impeded onto the separator’s liquid phase will cause a separator fails to perform when sloshing happened in the separator. To date, the study on verifying the impact of inlet slug flow in a separator remains limited. In this paper, the impact of inlet momentum and inlet slug flow on the hydrodynamics in a separator for cases without an inlet device were investigated. The experimental and Computational Fluid Dynamics (CFD) results of cavity formation and sloshing occurrence in the separator in this study were compared. A User Defined Function (UDF) was used to describe the inlet slug flow at the separator inlet. Inlet slug flow occurred at inlet momentum from 200 to 1000 Pa, and sloshing occurred in the separator at 1000 Pa. Both experimental and simulated results showed similar phenomena.


2018 ◽  
Vol 10 (7) ◽  
pp. 168781401878636
Author(s):  
Zhe Zhang ◽  
Jie Li ◽  
Wencui Guo

The method of yaw model is used to establish aerodynamic property of heavy truck in computational fluid dynamics and wind tunnel test. A model of multi-body system simulation for heavy truck is built based on design and measure data from body, driving system, steering system, braking system, and powertrain system with TruckSim. Aerodynamic reference point of Society of Automotive Engineers (SAE) and aerodynamic coefficients are as the interface to integrate computational fluid dynamics and multi-body system simulation. A sudden and discontinuous direction change of crosswind is set up in multi-body system simulation, and dynamic performance of the heavy truck is performed by open-loop and closed-loop simulation. Under the given simulation case, lateral offset of the truck for open-loop simulation is 1.55 m and more than that for closed-loop simulation; the roll rate range of both simulations is −1.49°/s to 1.695°/s, the range of lateral acceleration is −0.497 m/s2 to 0.447 m/s2 in open-loop simulation, the range of lateral acceleration is −0.467 m/s2 to 0.434 m/s2 in closed-loop simulation; the range of yaw rate is −1.36°/s to 1.284°/s in open-loop simulation, the range of yaw rate is −0.703°/s to 0.815°/s in closed-loop simulation. The results show that combined simulation of the heavy truck stability can be completed by computational fluid dynamics and multi-body system software under sudden and discontinuous direction change of crosswind.


1996 ◽  
Vol 14 (3) ◽  
pp. 186-198 ◽  
Author(s):  
W.K. Chow

The multi-cell concept is applied to simulate fire in a big com partment with the zone model CFAST. The predicted physical properties of the smoke layer are used to justify the results, including the smoke layer tempera ture, smoke layer thickness and flows between each cell. Microscopic pictures of the flow pattern and smoke temperature distribution similar to the results pre dicted by the Computational Fluid Dynamics technique can be obtained. This idea is recommended to study fires in big enclosures.


2015 ◽  
Vol 8 (3) ◽  
pp. 309-315 ◽  
Author(s):  
Pierre Bouillot ◽  
Olivier Brina ◽  
Rafik Ouared ◽  
Hasan Yilmaz ◽  
Karl-Olof Lovblad ◽  
...  

Background and purposeValidation of computational fluid dynamics (CFD) in stented intracranial aneurysms (IAs) is still lacking, to reliably predict prone to occlusion hemodynamics, probing, in particular, velocity reduction, and flow pattern changes. This study compares CFD outcome with particle imaging velocimetry (PIV) for three commercial off the shelf (COTS) stents of different material densities.Material and methodsThe recently developed uniform and high precision multi-time lag PIV method was applied to a sidewall aneurysm before and after implantation of three COTS stents with high, intermediate, and low material densities. The measured laser sheet flow patterns and velocity reductions were compared with CFD results and correlated with stent material density.ResultsVelocity reduction was in good agreement for unstented high and low porosity stented IA, while flow pattern change was fully matched for unstented and high porosity stented IA. Poor CFD–PIV matching in IA was found for intermediate porosity stents.ConclusionsCFD reproduced fully PIV measurements in unstented and high porosity stented IAs. With low porosity stents, CFD reproduced velocity reduction and high velocities close to the neck, while a marked mismatch on sluggish flow was found at the dome. CFD was unable to match PIV with intermediate porosity stents for which hemodynamic transition occurred.


Sign in / Sign up

Export Citation Format

Share Document