Numerical Simulations of the Non-Newtonian Blood Blow in Human Abdominal Artery Based on Reverse Engineering

2011 ◽  
Vol 140 ◽  
pp. 195-199 ◽  
Author(s):  
Jin You YANG ◽  
Yang Hong

The method that combined the reverse engineering based on CT medical images and computational fluid dynamics (CFD) was used to perform simulation the Non-Newtonian blood fluid flow in human abdominal artery, then analyzed the hemodynamic condition about the bifurcation of human abdominal artery. A Non-Newtonian blood model (the Generalised Power Law) was used to study the hemodynamic parameters during entire cardiac cycle. Calculated results for the Non-Newtonian blood flow show us the methods performed in this study is suitable for numerical simulating the blood flow in human artery and investigating the relation between hemodynamic factors and vascular disease.

2004 ◽  
Vol 126 (2) ◽  
pp. 180-187 ◽  
Author(s):  
Xinwei Song ◽  
Houston G. Wood ◽  
Don Olsen

The continuous flow ventricular assist device (VAD) is a miniature centrifugal pump, fully suspended by magnetic bearings, which is being developed for implantation in humans. The CF4 model is the first actual prototype of the final design product. The overall performances of blood flow in CF4 have been simulated using computational fluid dynamics (CFD) software: CFX, which is commercially available from ANSYS Inc. The flow regions modeled in CF4 include the inlet elbow, the five-blade impeller, the clearance gap below the impeller, and the exit volute. According to different needs from patients, a wide range of flow rates and revolutions per minute (RPM) have been studied. The flow rate-pressure curves are given. The streamlines in the flow field are drawn to detect stagnation points and vortices that could lead to thrombosis. The stress is calculated in the fluid field to estimate potential hemolysis. The stress is elevated to the decreased size of the blood flow paths through the smaller pump, but is still within the safe range. The thermal study on the pump, the blood and the surrounding tissue shows the temperature rise due to magnetoelectric heat sources and thermal dissipation is insignificant. CFD simulation proved valuable to demonstrate and to improve the performance of fluid flow in the design of a small size pump.


2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Jürgen Endres ◽  
Markus Kowarschik ◽  
Thomas Redel ◽  
Puneet Sharma ◽  
Viorel Mihalef ◽  
...  

Increasing interest is drawn on hemodynamic parameters for classifying the risk of rupture as well as treatment planning of cerebral aneurysms. A proposed method to obtain quantities such as wall shear stress, pressure, and blood flow velocity is to numerically simulate the blood flow using computational fluid dynamics (CFD) methods. For the validation of those calculated quantities, virtually generated angiograms, based on the CFD results, are increasingly used for a subsequent comparison with real, acquired angiograms. For the generation of virtual angiograms, several patient-specific parameters have to be incorporated to obtain virtual angiograms which match the acquired angiograms as best as possible. For this purpose, a workflow is presented and demonstrated involving multiple phantom and patient cases.


Author(s):  
Dooyoung Lee ◽  
Kuldeepsinh Rana ◽  
Karin Lee ◽  
Lisa A. DeLouise ◽  
Michael R. King

In previous work, we have described the adhesive capture of circulating stem cells to surfaces coated with adhesive selectin protein, both in vitro and in vivo. Here we describe PDMS surfaces microfabricated to contain an array of square 80 × 80 × 80 micron cavities. These cavities are intended to provide a local bioreactor environment to culture stem cells over extended periods of time, while sheltered from the higher shear stresses of the surrounding blood flow external of the cavities. In this paper we present in vitro flow experiments with polymeric, blood cell-sized microspheres, showing the creation of stable vortices within the microscale cavities. Computational fluid dynamics (CFD) was performed to predict the velocity field within the cavity, and for comparison with experimentally determined microsphere velocities. Future work will establish the ability to place local chemoattract molecules within the cavity interior, and the ability to accumulate viable stem cells within these cavities.


2000 ◽  
Author(s):  
James M. Sorokes ◽  
Bradley R. Hutchinson

Abstract In the development of industrial turbomachinery, the aerodynamic designer is faced with many complex fluid flow problems. In the mid to late 1980’s, Computational Fluid Dynamics (CFD) software was developed to assist in the solution of these flow fields. Initially applied only by high end gas turbine or jet engine designers, these sophisticated tools eventually found their way to engineers at industrial turbomachinery manufacturers. However, it has only been in the last five to ten years that industrial users have begun to make more widespread use of CFD. There are a variety of reasons for this slow adoption.


Author(s):  
T. Passerini ◽  
A. Quaini ◽  
U. Villa ◽  
A. Veneziani ◽  
S. Canic

Computational methods are the tool of choice for the study of physics phenomena in many fields of scientific endeavor. To guarantee the reliability of the results of computational analyses, it is crucial that mathematical models are validated and numerical methods are verified. A verified method is capable of correctly solving the problem equations, while a valid model is able to correctly describe the features of the problem (i.e. it uses the right equations). In this paper we: (i) verify and validate an open source computational fluid dynamics (CFD) framework for the solution of problems of interest in hemodynamics and (ii) provide a report on the methodology that we use, to make our experiences reproducible.


Author(s):  
Nicholas Shaffer ◽  
Francis Loth

The Biofluids Laboratory at the University of Akron has used Fluent [Ansys Inc., Canonsburg, PA] for image-based computational fluid dynamics (CFD) modeling of physiological flows since the lab’s inception in 2008. Recently our group has focused on modeling of pathophysiological problems in cerebrospinal fluid motion and air flow in the trachea, in addition to past work in cardiovascular problems.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Milda Bilinauskaite ◽  
Vishveshwar Rajendra Mantha ◽  
Abel Ilah Rouboa ◽  
Pranas Ziliukas ◽  
Antonio Jose Silva

The aim of this paper is to determine the hydrodynamic characteristics of swimmer’s scanned hand models for various combinations of both the angle of attack and the sweepback angle and shape and velocity of swimmer's hand, simulating separate underwater arm stroke phases of freestyle (front crawl) swimming. Four realistic 3D models of swimmer's hand corresponding to different combinations of separated/closed fingers positions were used to simulate different underwater front crawl phases. The fluid flow was simulated using FLUENT (ANSYS, PA, USA). Drag force and drag coefficient were calculated using (computational fluid dynamics) CFD in steady state. Results showed that the drag force and coefficient varied at the different flow velocities on all shapes of the hand and variation was observed for different hand positions corresponding to different stroke phases. The models of the hand with thumb adducted and abducted generated the highest drag forces and drag coefficients. The current study suggests that the realistic variation of both the orientation angles influenced higher values of drag, lift, and resultant coefficients and forces. To augment resultant force, which affects swimmer's propulsion, the swimmer should concentrate in effectively optimising achievable hand areas during crucial propulsive phases.


Sign in / Sign up

Export Citation Format

Share Document