Effect of Spherical Joint Symmetry Axis Orientation on the Kinematic Performance of Lower Mobility Parallel Manipulators

Author(s):  
H. M. El-Wehishy ◽  
M. Nemat-Alla ◽  
R. F. Abo-Shanab
Robotics ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 42 ◽  
Author(s):  
Matteo Palpacelli ◽  
Luca Carbonari ◽  
Giacomo Palmieri ◽  
Massimo Callegari

This article deals with the functional and preliminary design of a reconfigurable joint for robotic applications. Such mechanism is a key element for a class of lower mobility parallel manipulators, allowing a local reconfiguration of the kinematic chain that enables a change in platform’s mobility. The mechanism can be integrated in the kinematic structure of a 3-URU manipulator, which shall accordingly gain the ability to change mobility from pure translation to pure rotation. As a matter of fact, special kinematics conditions must be met for the accomplishment of this task. Such peculiar requirements are described and properly exploited for the design of an effective reconfigurable mechanism. A detailed description of the joint operational principle is provided, also showing how to design it when is physically located at the fixed base of the manipulator.


Robotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 10
Author(s):  
Raffaele Di Gregorio

A dimensional synthesis of parallel manipulators (PMs) consists of determining the values of the geometric parameters that affect the platform motion so that a useful workspace with assigned sizes can be suitably located in a free-from-singularity region of its operational space. The main goal of this preliminary dimensioning is to keep the PM far enough from singularities to avoid high internal loads in the links and guarantee a good positioning precision (i.e., for getting good kinematic performances). This paper presents a novel method for the dimensional synthesis of translational PMs (TPMs) and applies it to a TPM previously proposed by the author. The proposed method, which is based on Jacobians’ properties, exploits the fact that TPM parallel Jacobians are block diagonal matrices to overcome typical drawbacks of indices based on Jacobian properties. The proposed method can be also applied to all the lower-mobility PMs with block diagonal Jacobians that separate platform rotations from platform translations (e.g., parallel wrists).


1992 ◽  
Vol 114 (3) ◽  
pp. 368-375 ◽  
Author(s):  
V. Kumar

The workspaces and kinematic characterization of serial chain manipulator geometries and the geometric optimization have been studied extensively. Much less is known about workspaces for manipulation systems which possess several serial chains arranged in parallel. In this paper, two well known workspaces, the reachable workspace and the dexterous workspace, are investigated for parallel manipulators. A general method for obtaining these workspaces is presented. The existence of numerous special configurations in the workspace present problems in manipulator control. Therefore the controllably dexterous workspace is proposed as a useful measure of kinematic performance. The methodology of delineating the workspaces and its limitations are illustrated with examples.


Perception ◽  
1993 ◽  
Vol 22 (5) ◽  
pp. 565-587 ◽  
Author(s):  
Paul J Locher ◽  
Johan Wagemans

The influence of local and global attributes of symmetric patterns on the perceptual salience of symmetry was investigated. After tachistoscopic viewing, subjects discriminated between symmetric and either random patterns (experiment 1) or their perturbed counterparts (experiment 2) created by replacing one third of the mirror element-pairs of symmetric stimuli with ‘random’ elements. In general, it was found that perceptibility of symmetry, measured by response time and detection accuracy, was not influenced in a consistent way by type of pattern element (dots or line segments oriented vertically, horizontally, obliquely, or in all three orientations about the symmetry axis). Nor did axis orientation (vertical, horizontal, oblique), advance knowledge of axis orientation, practice effects, or subject sophistication differentially affect detection. A highly salient global percept of symmetry emerged, on the other hand, when elements were clustered together within a pattern, or grouped in symmetric pairs along a single symmetry axis or two orthogonal axes. Results suggest that mirror symmetry is detected preattentively, presumably by some kind of integral code which emerges from the interaction between display elements and the way they are organized spatially. It is proposed that symmetry is coded and signalled by the same spatial grouping processes as those responsible for construction of the full primal sketch.


Author(s):  
Haitao Liu ◽  
Weifeng Chen ◽  
Tian Huang ◽  
Huafeng Ding ◽  
Andres Kecskemethy

2011 ◽  
Vol 3 (2) ◽  
Author(s):  
Haitao Liu ◽  
Tian Huang ◽  
Derek G. Chetwynd

This paper presents a general and systematic approach for geometric error modeling of lower mobility manipulators. The approach can be implemented in three steps: (1) development of a linear map between the pose error twist and source errors within an individual limb using the homogeneous transformation matrix method; (2) formulation of a linear map between the pose error twist and the joint error intensities of a lower mobility parallel manipulator; and (3) combination of these two models. The merit of this approach lies in that it enables the source errors affecting the compensatable and uncompensatable pose accuracy of the platform to be explicitly separated, thereby providing designers and/or field engineers with an informative guideline for the accuracy improvement achievable by suitable measures, i.e., component tolerancing in design, manufacturing and assembly processes, and kinematic calibration. Three typical and well-known parallel manipulators are taken as examples to illustrate the generality and effectiveness of this approach.


Author(s):  
Oscar Altuzarra ◽  
Philipp Marcel Eggers ◽  
Francisco J. Campa ◽  
Constantino Roldan-Paraponiaris ◽  
Charles Pinto

Author(s):  
Shuai Fan ◽  
Shouwen Fan

When using parallel manipulators as machine tools, the spherical joint has been widely used and replaced by a combination of a universal joint and a rotating unit, but the introduced differences and effects have not been studied in detail. In this paper, an approach to establish the mathematical models of the ideal and combined spherical joints is presented, and the differences between the two spherical joints are given from the perspective of constraints, workspace, clearance, and contact deformation. First, the non-interference workspace of a class universal joint is investigated by using a simple and clear projection method, where the constraint domain and workspace of two spherical joints are proposed. Next, the approximate clearance models of these two spherical joints are analyzed, and the corresponding contact deformation models are also given based on the Hertzian Contact theory. Finally, a 1PU + 3UPS parallel manipulator is used to verify the discrepant effects of two spherical joints on parallel manipulators. If the combined spherical joint is used, the results indicate that the improvement in the workspace is significant, but the drop in stiffness is also evident. Thus, this paper provides a theoretical basis for researchers to use combined spherical joints.


Robotica ◽  
2020 ◽  
pp. 1-12
Author(s):  
Manxin Wang ◽  
Qiusheng Chen ◽  
Haitao Liu ◽  
Tian Huang ◽  
Hutian Feng ◽  
...  

SUMMARY This paper proposes a set of novel indices for evaluating the kinematic performance of a 3-RRS (R and S denote revolute and spherical joint respectively, R denotes active joint.), parallel mechanism whose translational and rotational movements are strongly coupled. First, the indices are formulated using the decoupled overall Jacobian matrix, which is developed using coordinate transformation. Then, the influences of the homogeneous dimensionless parameters on these indices are investigated. In addition, the dimension synthesis of the 3-RRS parallel mechanism is carried out by minimizing the mean value of the kinematic performance indices and their standard deviation. The results demonstrate that the established approach facilitates good global kinematic performance of the parallel mechanism.


Sign in / Sign up

Export Citation Format

Share Document