Non-edible/waste cooking oil–derived sustainable green multifunctional copolymeric additives for mineral base oil

Author(s):  
Priyanka Agarwal ◽  
Suheel K. Porwal
2014 ◽  
Vol 66 ◽  
pp. 371-378 ◽  
Author(s):  
Erpei Wang ◽  
Xiang Ma ◽  
Shuze Tang ◽  
Rian Yan ◽  
Yong Wang ◽  
...  

SPE Journal ◽  
2016 ◽  
Vol 21 (05) ◽  
pp. 1755-1766 ◽  
Author(s):  
Wai Li ◽  
Xionghu Zhao ◽  
Yihui Ji ◽  
Hui Peng ◽  
Bin Chen ◽  
...  

Summary As a type of mono-alkyl ester, biodiesel exhibits great potential to serve as the base oil of drilling fluids substituting for conventional oil-based drilling fluids (OBDFs). This paper presents a series of laboratory investigations of water-in-biodiesel (invert) emulsion as the basis of a high-performance, environmentally friendly, and low-cost biodiesel-based drilling fluid (BBDF). Biodiesel produced from waste cooking oil was used to formulate a BBDF because of its high flashpoint, reliable storage stability, acceptable elastomeric material compatibility, nontoxicity, and excellent biodegradability. In light of the results of tests used to measure various properties, the biodiesel invert-emulsion chemistry, including the required hydrophile/lipophile balance (HLB), optimal emulsifier, effects of different additives (organophilic clay, calcium chloride, and lime), as well as hydrolytic stability, was studied. A biodiesel invert emulsion that remains stable after hot rolling at 120°C for 16 hours can be prepared with correct combinations of additives, thereby offering a firm foundation for designing BBDFs. The novel emulsifier package developed in this work is introduced as an achievement in the comprehensive usage of waste cooking oil because its feedstock is identical to that of biodiesel. An initial economic analysis of the use of biodiesel for drilling is also presented. Details of the formulations and properties of BBDFs derived from this fundamental research are discussed in another paper (Part 2).


2008 ◽  
Vol 4 (4) ◽  
pp. 318-323 ◽  
Author(s):  
Hirotsugu KAMAHARA ◽  
Shun YAMAGUCHI ◽  
Ryuichi TACHIBANA ◽  
Naohiro GOTO ◽  
Koichi FUJIE

Author(s):  
Charishma Venkata Sai Anne ◽  
Karthikeyan S. ◽  
Arun C.

Background: Waste biomass derived reusable heterogeneous acid based catalysts are more suitable to overcome the problems associated with homogeneous catalysts. The use of agricultural biomass as catalyst for transesterification process is more economical and it reduces the overall production cost of biodiesel. The identification of an appropriate suitable catalyst for effective transesterification will be a landmark in biofuel sector Objective: In the present investigation, waste wood biomass was used to prepare a low cost sulfonated solid acid catalyst for the production of biodiesel using waste cooking oil. Methods: The pretreated wood biomass was first calcined then sulfonated with H2SO4. The catalyst was characterized by various analyses such as, Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS) and X-ray diffraction (XRD). The central composite design (CCD) based response surface methodology (RSM) was applied to study the influence of individual process variables such as temperature, catalyst load, methanol to oil molar ration and reaction time on biodiesel yield. Results: The obtained optimized conditions are as follows: temperature (165 ˚C), catalyst loading (1.625 wt%), methanol to oil molar ratio (15:1) and reaction time (143 min) with a maximum biodiesel yield of 95 %. The Gas chromatographymass spectrometry (GC-MS) analysis of biodiesel produced from waste cooking oil was showed that it has a mixture of both monounsaturated and saturated methyl esters. Conclusion: Thus the waste wood biomass derived heterogeneous catalyst for the transesterification process of waste cooking oil can be applied for sustainable biodiesel production by adding an additional value for the waste materials and also eliminating the disposable problem of waste oils.


2014 ◽  
Vol 3 (10) ◽  
pp. 3419
Author(s):  
Mohan Reddy Nalabolu* ◽  
Varaprasad Bobbarala ◽  
Mahesh Kandula

At the present moment worldwide waning fossil fuel resources as well as the tendency for developing new renewable biofuels have shifted the interest of the society towards finding novel alternative fuel sources. Biofuels have been put forward as one of a range of alternatives with lower emissions and a higher degree of fuel security and gives potential opportunities for rural and regional communities. Biodiesel has a great potential as an alternative diesel fuel. In this work, biodiesel was prepared from waste cooking oil it was converted into biodiesel through single step transesterification. Methanol with Potassium hydroxide as a catalyst was used for the transesterification process. The biodiesel was characterized by its fuel properties including acid value, cloud and pour points, water content, sediments, oxidation stability, carbon residue, flash point, kinematic viscosity, density according to IS: 15607-05 standards. The viscosity of the waste cooking oil biodiesel was found to be 4.05 mm2/sec at 400C. Flash point was found to be 1280C, water and sediment was 236mg/kg, 0 % respectively, carbon residue was 0.017%, total acid value was 0.2 mgKOH/g, cloud point was 40C and pour point was 120C. The results showed that one step transesterification was better and resulted in higher yield and better fuel properties. The research demonstrated that biodiesel obtained under optimum conditions from waste cooking oil was of good quality and could be used as a diesel fuel.


Author(s):  
Yang Li ◽  
Zhenzhen Cheng ◽  
Chunlei Zhao ◽  
Cong Gao ◽  
Wei Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document