Transcriptional expression of Na+ homeostasis-related genes and physiological responses of rice seedlings under salt stress

Author(s):  
Cattarin Theerawitaya ◽  
Thapanee Samphumphuang ◽  
Rujira Tisarum ◽  
Meechai Siangliw ◽  
Suriyan Cha-um ◽  
...  
2012 ◽  
Vol 58 (No. 7) ◽  
pp. 309-315 ◽  
Author(s):  
N. Nounjan ◽  
P. Theerakulpisut

Two osmoprotectants (proline &ndash; Pro; trehalose &ndash; Tre) were exogenously supplied to seedlings of rice cvs. Pokkali (PK &ndash; salt-tolerant) and Khao Dawk Mali 105 (KDML105 &ndash; salt-sensitive) to investigate their effects on plants exposed to 200 mmol/L NaCl for 6 days and 5 days after recovery from stress. The reduction of growth, increase in Na<sup>+</sup> to K<sup>+</sup> ratio, high level of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) content, enhanced activity of antioxidant enzymes (superoxide dismutase &ndash; SOD, peroxidase &ndash; POX, catalase &ndash; CAT and ascorbate peroxidase &ndash; APX) were observed in both rice cultivars under NaCl treatments. Exogenous Pro and Tre supplement to NaCl-stressed plants did not mitigate the reduction of growth during salt-stress. Nevertheless, during recovery plants previously supplied with Tre showed markedly higher percentage of growth recovery than those treated with NaCl alone or supplied with Pro. The beneficial effect of Tre on growth recovery was clearly demonstrated in KDML105 in which growth enhancement was related to reduction in Na<sup>+</sup> to K<sup>+</sup> ratio. Exogenous Pro was able to reduce H<sub>2</sub>O<sub>2</sub> in both cultivars during salt stress whereas Tre could reduce it only in KDML105. Exogenous Tre did not enhance any antioxidant enzymes during stress but enhanced APX activity in KDML105 during recovery. Exogenous Pro enhanced the activity of APX in PK, and POX, CAT and APX in KDML105 during both stress and recovery period. &nbsp; &nbsp;


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Piyada Theerakulpisut ◽  
Nantawan Kanawapee ◽  
Bunika Panwong

The potential of seed priming by different chemicals on alleviation of growth inhibition of rice (<em>Oryza</em> <em>sativa</em> L.) seedlings under salt stress was investigated. A preliminary experiment using 10 seed-priming chemicals including NaCl, KCl, CaCl2, KNO3, ascorbic acid (AsA), mannitol, polyethylene glycol (PEG6000), sorbitol, wood vinegar and distilled water revealed that mannitol, KNO3 and wood vinegar were more effective than the others in alleviating salt-induced growth inhibition of 10- day-old seedlings. Various concentrations of mannitol (1, 2 and 3%), KNO3 (0.25, 0.5 and 0.75%) and wood vinegar (1:1000, 1:300 and 1:100 dilutions) were subsequently used to prime rice seeds to investigate the effects on mitigation of salt-induced growth inhibition and modulation of physiological responses of 4-week-old rice plants grown in a hydroponic solution. All tested concentrations of mannitol, KNO3 and wood vinegar resulted in seedlings with significantly higher dry weights than those grown from non-primed and hydroprimed seeds under both controlled and saltstressed (150 mM NaCl, 7 days) conditions. Under salt stress, enhanced growth of seedlings raised from seeds primed with all three chemicals was attributable to greater membrane stability, higher chlorophyll content and lower Na+/K+ ratio.


Author(s):  
Feiyu Yan ◽  
Haimin Wei ◽  
Yanfeng Ding ◽  
Weiwei Li ◽  
Zhenghui Liu ◽  
...  
Keyword(s):  

2021 ◽  
Vol 164 ◽  
pp. 10-20
Author(s):  
Wancong Yu ◽  
Yue Yu ◽  
Ceng Wang ◽  
Zhijun Zhang ◽  
Zhaohui Xue

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 345
Author(s):  
Simona Carfagna ◽  
Giovanna Salbitani ◽  
Michele Innangi ◽  
Bruno Menale ◽  
Olga De Castro ◽  
...  

Pancratium maritimum (Amaryllidaceae) is a bulbous geophyte growing on coastal sands. In this study, we investigated changes in concentrations of metabolites in the root and leaf tissue of P. maritimum in response to mild salt stress. Changes in concentrations of osmolytes, glutathione, sodium, mineral nutrients, enzymes, and other compounds in the leaves and roots were measured at 0, 3, and 10 days during a 10-day exposure to two levels of mild salt stress, 50 mM NaCl or 100 mM NaCl in sandy soil from where the plants were collected in dunes near Cuma, Italy. Sodium accumulated in the roots, and relatively little was translocated to the leaves. At both concentrations of NaCl, higher values of the concentrations of oxidized glutathione disulfide (GSSG), compared to reduced glutathione (GSH), in roots and leaves were associated with salt tolerance. The concentration of proline increased more in the leaves than in the roots, and glycine betaine increased in both roots and leaves. Differences in the accumulation of organic osmolytes and electron donors synthesized in both leaves and roots demonstrate that osmoregulatory and electrical responses occur in these organs of P. maritimum under mild salt stress.


2015 ◽  
Vol 14 (1) ◽  
pp. 2384-2398 ◽  
Author(s):  
G.P. Moraes ◽  
L.C. Benitez ◽  
M.N. do Amaral ◽  
I.L. Vighi ◽  
P.A. Auler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document