scholarly journals Erratum to: Comparative Responses of Bermudagrass and Seashore Paspalum Cultivars Commonly Used in Egypt to Combat Salinity Stress

2013 ◽  
Vol 54 (2) ◽  
pp. 190-190
Author(s):  
Mohamed Ahmed Shahba
HortScience ◽  
2011 ◽  
Vol 46 (2) ◽  
pp. 311-316 ◽  
Author(s):  
Yiming Liu ◽  
Hongmei Du ◽  
Kai Wang ◽  
Bingru Huang ◽  
Zhaolong Wang

Salinity is a detrimental abiotic stress for plant growth in salt-affected soils. The objective of this study was to examine photosynthetic responses to salinity stress in two warm-season turfgrasses differing in salinity tolerance. Salt-tolerant species seashore paspalum (Paspalum vaginatum) and salt-sensitive species centipedegrass (Eremochloa ophiuroides) were exposed to salinity at three NaCl concentrations (0, 300, and 500 mm) in a growth chamber. Turf quality, relative water content (RWC), and leaf photochemical efficiency (Fv/Fm) declined, whereas electrolyte leakage (EL) increased under the two NaCl regimes for both grass species, and the changes were more dramatic in centipedegrass than that in seashore paspalum as well as in the higher salinity concentration. Two grass species showed different phytosynthetic responses to salinity stress. The earlier inhibition of photosynthesis in seashore paspalum was mainly associated with stomatal closure. As salinity increased and salinity stress prolonged, the inhibition of photosynthesis in seashore paspalum was mainly associated with non-stomatal factors. The inhibition of photosynthesis in centipedegrass was associated with both stomatal closure and non-stomatal factors at both salinity levels. The sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) analysis demonstrated the Rubisco large subunit had no obvious decrease during the whole stress period under the 300-mm and 500-mm treatments in seashore paspalum, whereas it significantly decreased in centipedegrass under both the 300-mm and 500-mm treatments. The results indicated that the superior salinity tolerance in seashore paspalum, compared with centipedegrass, could be attributed to its maintenance of Rubisco stability, chlorophyll content, photochemical efficiency as well as photosynthetic rate (Pn) capacity under salinity stress.


HortScience ◽  
2019 ◽  
Vol 54 (9) ◽  
pp. 1625-1631 ◽  
Author(s):  
Manuel Chavarria ◽  
Benjamin Wherley ◽  
James Thomas ◽  
Ambika Chandra ◽  
Paul Raymer

As population growth places greater pressures on potable water supplies, nonpotable recycled irrigation water is becoming widely used on turfgrass areas including golf courses, sports fields, parks, and lawns. Nonpotable recycled waters often have elevated salinity levels, and therefore turfgrasses must, increasingly, have good salinity tolerance to persist in these environments. This greenhouse study evaluated 10 commonly used cultivars representing warm-season turfgrass species of bermudagrass (Cynodon spp.), zoysiagrass (Zoysia spp.), st. augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze], and seashore paspalum (Paspalum vaginatum Swartz) for their comparative salinity tolerance at electrical conductivity (EC) levels of 2.5 (control), 15, 30, and 45 dS·m–1. Salinity treatments were imposed on the grasses for 10 weeks via subirrigation, followed by a 4-week freshwater recovery period. Attributes, including turf quality, the normalized difference vegetation index (NDVI), canopy firing, and shoot biomass reductions were evaluated before and after salinity stress, as well as after the 4-week freshwater recovery period. Results showed considerable differences in salinity tolerance among the cultivars and species used, with the greatest tolerance to elevated salinity noted within seashore paspalum cultivars and Celebration® bermudagrass. In comparison with growth in 2.5-dS·m–1 control conditions, increased shoot growth and turf quality were noted for many bermudagrass and seashore paspalum cultivars at 15 dS·m–1. However, st. augustinegrass and some zoysiagrass cultivars responded to elevated salinity with decreased growth and turf quality. No cultivars that had been exposed to 30- or 45-dS·m–1 salinity recovered to acceptable levels, although bermudagrass and seashore paspalum recovered to acceptable levels after exposure to 15-dS·m–1 salinity. More severe salinity stress was noted during year 2, which coincided with greater greenhouse temperatures relative to year 1.


2016 ◽  
Vol 163 ◽  
pp. 57-65 ◽  
Author(s):  
A. Pompeiano ◽  
E. Di Patrizio ◽  
M. Volterrani ◽  
A. Scartazza ◽  
L. Guglielminetti

Plant Science ◽  
2004 ◽  
Vol 166 (6) ◽  
pp. 1417-1425 ◽  
Author(s):  
Geungjoo Lee ◽  
Robert N Carrow ◽  
Ronny R Duncan

2005 ◽  
Vol 104 (2) ◽  
pp. 221-236 ◽  
Author(s):  
Geungjoo Lee ◽  
Robert N. Carrow ◽  
Ronny R. Duncan

2018 ◽  
Vol 51 (1) ◽  
Author(s):  
Mehdi Taghizadegan ◽  
Mahmoud Toorchi ◽  
Mohammad Moghadam Vahed ◽  
Samar Khayamim

2019 ◽  
Vol 45 (1) ◽  
pp. 100
Author(s):  
Qing-Qing YAN ◽  
Ju-Song ZHANG ◽  
Xing-Xing LI ◽  
Yan-Ti WANG

Sign in / Sign up

Export Citation Format

Share Document