scholarly journals Hydraulic traits and tree-ring width in Larix sibirica Ledeb. as affected by summer drought and forest fragmentation in the Mongolian forest steppe

2018 ◽  
Vol 75 (1) ◽  
Author(s):  
Elmira Khansaritoreh ◽  
Bernhard Schuldt ◽  
Choimaa Dulamsuren
2011 ◽  
Vol 68 (2) ◽  
pp. 275-282 ◽  
Author(s):  
Choimaa Dulamsuren ◽  
Markus Hauck ◽  
Hanns Hubert Leuschner ◽  
Christoph Leuschner

Author(s):  
S.R. Kuzmin ◽  
◽  

Tree-ring width and latewood content were studied to assess the response of wood to growing conditions. Samples were taken from the trees of six Scots pine climatypes with contrast origin, grown in the conditions of provenance trials in southern taiga of Central Siberia (Boguchany forestry) and forest-steppe of Western Siberia (Suzun forestry). A comparative analysis of variance of mean values of the studied features between the climatypes within each test point and between the points is carried out. Correlation analysis was used to analyze the dynamics of the studied traits and as their response to weather conditions over a long period. It was revealed that in the forest-steppe conditions maximal radial increments for all climatypes were observed on average at the age of 9 and in southern taiga at the age of 12–16. Tree-ring width of the climatypes from the south is significantly lower in the foreststeppe conditions than that of of the representatives of northern origin. Climatypes transferred from a warmer climate to southern taiga are characterized by significantly larger values of tree-ring width than in the northernmost of the studied ones. The latewood content decreases in all studied climatypes of pine in southern taiga in comparison with foreststeppe. Significant response of the latewood content of climatypes in forest-steppe is observed not only with average monthly weather conditions of the second part of vegetation period but also with the first. It indicates a higher sensitivity of their wood structure to the complex of climatic and ecological conditions in the provenance trials of forest-steppe compared with southern taiga. The research results show that the Boguchany climatype is genetically stable in terms of the average values of tree-ring width and latewood content in foreststeppe and southern taiga.


2021 ◽  
Vol 303 ◽  
pp. 108394
Author(s):  
Nathsuda Pumijumnong ◽  
Piyarat Songtrirat ◽  
Supaporn Buajan ◽  
Sineenart Preechamart ◽  
Uthai Chareonwong ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 174
Author(s):  
Elena A. Babushkina ◽  
Dina F. Zhirnova ◽  
Liliana V. Belokopytova ◽  
Nivedita Mehrotra ◽  
Santosh K. Shah ◽  
...  

Improvement of dendrochronological crops yield reconstruction by separate application of earlywood and latewood width chronologies succeeded in rain-fed semiarid region. (1) Background: Tree-ring width chronologies have been successfully applied for crops yield reconstruction models. We propose application of separated earlywood and latewood width chronologies as possible predictors improving the fitness of reconstruction models. (2) Methods: The generalized yield series of main crops (spring wheat, spring barley, oats) were investigated in rain-fed and irrigated areas in semiarid steppes of South Siberia. Chronologies of earlywood, latewood, and total ring width of Siberian larch (Larix sibirica Ledeb.) growing in forest-steppe in the middle of the study area were tested as predictors of yield reconstruction models. (3) Results: In the rain-fed territory, separation of earlywood and latewood allowed increasing variation of yield explained by reconstruction model from 17.4 to 20.5%, whereas total climatic-driven component of variation was 41.5%. However, both tree-ring based models explained only 7.7% of yield variation in the irrigated territory (climate inclusion increased it to 34.8%). Low temperature sensitivity of larch growth was the main limitation of the model. A 240-year (1780–2019) history of crop failures and yield variation dynamics were estimated from the actual data and the best reconstruction model. (4) Conclusions: Presently in the study region, breeding of the environment-resistant crops varieties compensates the increase of temperature in the yield dynamics, preventing severe harvest losses. Tree-ring based reconstructions may help to understand and forecast response of the crops to the climatic variability, and also the probability of crop failures, particularly in the rain-fed territories.


2010 ◽  
Vol 29 (17-18) ◽  
pp. 2111-2122 ◽  
Author(s):  
X. Shao ◽  
Y. Xu ◽  
Z.-Y. Yin ◽  
E. Liang ◽  
H. Zhu ◽  
...  

2017 ◽  
Vol 41 (4) ◽  
pp. 478-495 ◽  
Author(s):  
UK Thapa ◽  
S St. George ◽  
DK Kharal ◽  
NP Gaire

The climate of Nepal has changed rapidly over the recent decades, but most instrumental records of weather and hydrology only extend back to the 1980s. Tree rings can provide a longer perspective on recent environmental changes, and since the early 2000s, a new round of field initiatives by international researchers and Nepali scientists have more than doubled the size of the country’s tree-ring network. In this paper, we present a comprehensive analysis of the current tree-ring width network for Nepal, and use this network to estimate changes in forest growth nation-wide during the last four centuries. Ring-width chronologies in Nepal have been developed from 11 tree species, and half of the records span at least 290 years. The Nepal tree-ring width network provides a robust estimate of annual forest growth over roughly the last four centuries, but prior to this point, our mean ring-width composite fluctuates wildly due to low sample replication. Over the last four centuries, two major events are prominent in the all-Nepal composite: (i) a prolonged and widespread growth suppression during the early 1800s; and (ii) heightened growth during the most recent decade. The early 19th century decline in tree growth coincides with two major Indonesian eruptions, and suggests that short-term disturbances related to climate extremes can exert a lasting influence on the vigor of Nepal’s forests. Growth increases since AD 2000 are mainly apparent in high-elevation fir, which may be a consequence of the observed trend towards warmer temperatures, particularly during winter. This synthesis effort should be useful to establish baselines for tree-ring data in Nepal and provide a broader context to evaluate the sensitivity or behavior of this proxy in the central Himalayas.


The Holocene ◽  
2021 ◽  
pp. 095968362110116
Author(s):  
Jeroen DM Schreel

Over the last few decades – at a range of northern sites – changes in tree-ring width and latewood density have not followed mean summertime temperature fluctuations. This discrepancy sharply contrasts an earlier correlation between those variables. As the origin of this inconsistency has not been fully deciphered, questions have emerged regarding the use of tree-ring width and latewood density as a proxy in dendrochronological climate reconstructions. I suggest that temperature is no longer the most limiting factor in certain boreal areas, which might explain the observed divergence.


Sign in / Sign up

Export Citation Format

Share Document