scholarly journals New appetite for the monitoring of European forests

2021 ◽  
Vol 78 (4) ◽  
Author(s):  
Marco Ferretti

Abstract Key message Future international forest monitoring should build upon the existing pan-European programs. There is a renewed interest in the monitoring of European forests. Future monitoring systems should build upon existing international programs, making use of their strengths and solving their weaknesses. This approach will result into win–win solutions for both the existing and future systems. The UNECE ICP Forests has a number of characteristics that makes it a very good and strong basis for developing an advanced international forest monitoring system.

2013 ◽  
Vol 59 (4) ◽  
pp. 289-294 ◽  
Author(s):  
Danica Krupová ◽  
Pavel Pavlenda

Abstract This review paper summarises the development of forest monitoring in Europe and in Slovakia. Since 1986 Forest Research Institute has been performing monitoring activities at the systematic grid of 16×16 km on permanent monitoring plots of Level I (extensive monitoring) and since 1995 on 9 plots of II. Level (intensive monitoring), which is closely connected with programme ICP Forests and PMS Forests. However, during 1991-1992 monitoring on 1189 plots in the grid of 4×4 km in Slovakia was done by Lesoprojekt Zvolen, which was repeated during the last 10 years as a part of LHP (every year 1/10 territory). This paper describes briefly also surveys and monitoring activities of different monitoring systems, parameters, methods and the perspectives of monitoring of the forest condition


2015 ◽  
Vol 5 (1) ◽  
pp. 16-19
Author(s):  
Henry Scheyvens ◽  
Makino Yamanoshita ◽  
Taiji Fujisaki ◽  
Agus Setyarso ◽  
Saykham Boutthavong ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 561
Author(s):  
Taehee Lee ◽  
Chanjun Chun ◽  
Seung-Ki Ryu

Road surfaces should be maintained in excellent condition to ensure the safety of motorists. To this end, there exist various road-surface monitoring systems, each of which is known to have specific advantages and disadvantages. In this study, a smartphone-based dual-acquisition method system capable of acquiring images of road-surface anomalies and measuring the acceleration of the vehicle upon their detection was developed to explore the complementarity benefits of the two different methods. A road test was conducted in which 1896 road-surface images and corresponding three-axis acceleration data were acquired. All images were classified based on the presence and type of anomalies, and histograms of the maximum variations in the acceleration in the gravitational direction were comparatively analyzed. When the types of anomalies were not considered, it was difficult to identify their effects using the histograms. The differences among histograms became evident upon consideration of whether the vehicle wheels passed over the anomalies, and when excluding longitudinal anomalies that caused minor changes in acceleration. Although the image-based monitoring system used in this research provided poor performance on its own, the severity of road-surface anomalies was accurately inferred using the specific range of the maximum variation of acceleration in the gravitational direction.


Author(s):  
Dai Wei ◽  
Yong Bai

Recent incidents with drilling risers in the Gulf of Mexico have led the industry’s application of more stringent integrity assurance requirements to its deepwater risers. Riser monitoring provides information that enables the operator to measure riser configurations and fatigue damage, confirm the integrity of the riser, assist with operational decisions, optimize inspection, maintenance and repair schedules /procedures and calibrate design tools. Monitoring can also improve the understanding of complex behavior of risers for the improvement to future design and analysis tools. This paper presents the characters of three different monitoring systems that suit specific objectives and requirements. An example project of acoustic approach is introduced with its working mode and design scheme.


2021 ◽  
Author(s):  
Vadim Goryachikh ◽  
Fahad Alghamdi ◽  
Abdulrahman Takrouni

Abstract Background information Natural gas liquid (NGL) production facilities, typically, utilize turbo-expander-brake compressor (TE) to generate cold for C2+ separation from the natural gas by isentropic expansion of feed stream and use energy absorbed by expansion to compress residue gas. Experience shows that during operational phase TE can exposed to operation outside of design window that may lead to machine integrity loss and consequent impact on production. At the same time, there is a lack of performance indicators that help operator to monitor operating window of the machine and proactively identify performance deterioration. For instance, TE brake compressor side is always equipped with anti-surge protection system, including surge deviation alarms and trip. However, there is often gap in monitoring deviation from stonewall region. At the same time, in some of the designs (2×50% machines) likelihood of running brake compressor in stonewall is high during one machine trip or train start-up, turndown operating modes. Also, typical compressor performance monitoring systems does not have enough dynamic parameters that may indicate machine process process performance deterioration proactively (real-time calculation of actual polytrophic efficiency, absorbed power etc.) and help operator to take action before catastrophic failure occurs. In addition, typical compressor monitoring systems are based on assumed composition and fixed compressibility factor and do not reflect actual compositions variations that may affect machine performance monitoring. To overcome issues highlighted above, Hawiyah NGL (HNGL) team has developed computerized monitoring and advisory system to monitor the performance of turbo-expander-brake compressor, proactively, identify potentially unsafe conditions or performance deterioration and advice operators on taking necessary actions to avoid unscheduled deferment of production. Computerized performance monitoring system has been implemented in HNGL DCS (Yokogawa) and utilized by control room operators on day-to-day basis. Real-time calculation, analysis and outputs produced by performance monitoring system allow operator to understand how current operating condition are far from danger zone. Proactive deviation alarms and guide messages produce by the system in case of deviation help operators to control machine from entering unsafe region. Actual polytrophic efficiency, adsorbed power calculations provide machine condition status and allow identifying long-term performance deterioration trends.


Author(s):  
B. M. Shubik ◽  

The processes of development of hydrocarbon deposits are accompanied, as a rule, by an increase in the level of seismicity and, in particular, by the occurrence of technogenic earthquakes and other deformation phenomena associated with changes in the geodynamic regime. To monitor deformation and geodynamic processes, a seismic monitoring service should be organized. A similar monitoring system is also required for the analysis of aftershock and volcanic activity. Monitoring technology should be based on the use of reliable and fast methods of automatic detection and localization of seismic events of various scales. Traditional approaches to the detection and localization of earthquake epicenters and hypocenters are based on the analysis of data recorded by one or more single seismic stations. In that case, seismic event coordinates are estimated by means of signal extraction from noise and accurately measuring arrival times of a number of specific phases of the seismic signal at each recording point. Existing computational techniques have inherited this traditional approach. However, automatic procedures based on the ideology of manual processing turn out to be extremely laborious and ineffective due to the complexity of algorithms adequate to the actions of an experienced geophysicist-interpreter. The article contains a description of new approaches to the synthesis of automatic monitoring systems, which are based on the principles of emission tomography, use of spatial registration systems, energy analysis of wave fields and methods of converting real waveforms into low-frequency model signals (so-called filter masks/templates). The monitoring system was successfully tested in the process of detecting and locating the epicenters and hypocenters of 19 weak local earthquakes in Israel, as well as a quarry explosion.


2020 ◽  
Vol 51 (2) ◽  
pp. 03-04
Author(s):  
Raven Boxman

The woods environment is basic for providing common assets to the greenery. The woods is an indispensable safe-haven, albeit at present it is presented to illicit logging by insatiable individuals, and this has altogether influenced the woodland. Because of this criminal behavior, unfortunate wonder has surfaced. Consequently, the system of this exploration is worried about building up a far off observing gadget that could catch basic ongoing information, for example, temperature, moistness, vaporous substance, and bonfire and downpour location, which could show the recent and the safeguarded characteristic state and environment in the woods. The model was actualized at chosen areas to screen and assemble information at two stages. The results from this exploration will be utilized in the advancement of a progression of games as instructing helps that can make mindful our group of people yet to come about the consumption and its effect upon the earth.


2018 ◽  
Vol 5 (4) ◽  
Author(s):  
Timofey Baranov ◽  
Evgeniy Tolstikov

Deviations in the operation of the operated bridge structures on the railway are detected when damage occurs. At the same time, early detection and prognosis of damage progress can be obtained using monitoring systems. The article presents the methods and technologies for the use of mobile monitoring systems for assessing the actual operation of the metal superstructure of the railway bridge with the main driving trusses. The hardware of the measuring complex is considered, the main measuring instrument is the glued electrical strain gauges. The monitoring system kept a continuous record of sensor readings for 28 days. To process the data received by the monitoring system, specialized software has been developed that systematizes the incoming information. Analysis of the actual supertructure operation is carried out by finding the relationship of stresses in the various elements of the superstructure, arising under the same load. This approach allowed us to exclude the factor of unknown intensity of the temporary load. The results of monitoring the work of the superstructure are given. In total, over 680 train passage records were analyzed, which allowed for a statistical description of the data. The theoretical values of the relationship of stresses in the elements of the superstructure are determined using the apparatus of the influence lines obtained by a numerical method. The conclusions are made about the distribution of deformations of the superstructure under temporary load and about the degree of compliance with theoretical calculations. The construction factors and the values of their statistical scatter are determined, the actual dynamic factors are statistically calculated. The construction factors calculated from the stress ratios lie in the range of 0.8-1.116. Dynamic factors are within 1.13 and do not exceed the rated values.


Author(s):  
Hafiz Saad Ahmad, Ali Hasnain

In recent years evolution of Internet of Things has brought revolution in many different sectors.  The agriculture sector has become efficient and cost effective due to role of IoT. Monitoring systems has become the crucial part of agriculture. In past few years lot of work is been done and many systems has been purposed in this regard. In this paper we are going to make comparison between 4 different agriculture monitoring systems. We are also going to discuss what type of hardware including different sensors are used in those systems. We are also going to discuss software and platform on which those applications run. We will also discuss processing mechanism and what kind of algorithms are used in these systems and in the last we are going to make a comparative table based on these parameters.


Sign in / Sign up

Export Citation Format

Share Document