Effects of low-temperature dry anaerobic digestion on methane production and pathogen reduction in dairy cow manure

2019 ◽  
Vol 16 (8) ◽  
pp. 4803-4810 ◽  
Author(s):  
R. Rajagopal ◽  
D. Ghosh ◽  
S. Ashraf ◽  
B. Goyette ◽  
X. Zhao
2021 ◽  
Vol 13 (4) ◽  
pp. 27
Author(s):  
Ephodia Sihlangu ◽  
Dibungi Luseba ◽  
Khathutshelo A. Nephawe ◽  
Florence V. Nherera-Chokuda

Dairy cow manure has high buffering capacity hence a substrate for anaerobic digestion, however the process is not optimised in mono-digestion system due to limited substrate. The aim of the study was to assess the effect of co-digesting animal waste and vegetable waste on methane production. Two systems were applied- batch and continuous anaerobic digestion system to determine effect on methane yield. The experiments were conducted with treatments as: manure alone (M), composite of manure with cabbage (MC), manure with potatoes (MP), manure with cabbage and potatoes (MCP), faecal alone (F), faecal with cabbage (FC), faecal with potatoes (FP) and faecal with cabbage and potatoes (FCP). Rectal grab samples were collected prior to incubation and manure was collected from the pens. All treatments were in replicates. Composite of manure or faecal with cabbage and potatoes produced the highest biogas (FCP: 32.1 mL/g DM, MCP: 29.5 mL/g DM) and methane (FCP: 3.13 mL/g DM, MCP: 2.36 mL/g DM) compared to manure alone or faecal alone (F: 27.0 biogas mL/g DM, M: 26.6 biogas mL/g DM) (F: 1.36 methane mL/g DM, M: 1.18 methane mL/g DM). Co-digesting dairy excreta with cabbage as only vegetable substrate affected anaerobic digestion (FC: 24.8 mL/g DM, MC: 24.9 mL/g DM), since it was the lowest in biogas production compared to all treatments. The anaerobic digestion system had an effect in methane production since continuous anaerobic digestion system produced the highest methane compared to batch anaerobic digestion system in all treatments. The results obtained in this study suggest that composite of manure with both cabbage and potatoes results in the highest biogas and methane production.


2021 ◽  
Vol 12 ◽  
Author(s):  
Satoshi Katada ◽  
Akira Fukuda ◽  
Chie Nakajima ◽  
Yasuhiko Suzuki ◽  
Takashi Azuma ◽  
...  

Efficient methods for decreasing the spread of antimicrobial resistance genes (ARGs) and transfer of antimicrobial-resistant bacteria (ARB) from livestock manure to humans are urgently needed. Aerobic composting (AC) or anaerobic digestion (AD) are widely used for manure treatment in Japanese dairy farms. To clarify the effects of AC and AD on antimicrobial resistance, the abundances of antimicrobial (tetracycline and cefazolin)-resistant lactose-degrading Enterobacteriaceae as indicator bacteria, copy numbers of ARGs (tetracycline resistance genes and β-lactamase coding genes), and concentrations of residual antimicrobials in dairy cow manure were determined before and after treatment. The concentration of tetracycline/cefazolin-resistant lactose-degrading Enterobacteriaceae was decreased over 1,000-fold by both AC and AD. ARGs such as tetA, tetB, and blaTEM were frequently detected and their copy numbers were significantly reduced by ∼1,000-fold by AD but not by AC. However, several ARG copies remained even after AD treatment. Although concentrations of the majority of residual antimicrobials were decreased by both AC and AD, oxytetracycline level was not decreased after treatment in most cases. In addition, 16S rRNA gene amplicon-based metagenomic analysis revealed that both treatments changed the bacterial community structure. These results suggest that both AC and AD could suppress the transmission of ARB, and AD could reduce ARG copy numbers in dairy cow manure.


Author(s):  
S. Giray Velioğlu ◽  
Kriton Curi ◽  
Ahmet Baban ◽  
Necdet Alpaslan

2008 ◽  
Vol 99 (17) ◽  
pp. 8288-8293 ◽  
Author(s):  
Maritza Macias-Corral ◽  
Zohrab Samani ◽  
Adrian Hanson ◽  
Geoffrey Smith ◽  
Paul Funk ◽  
...  

2019 ◽  
Vol 274 ◽  
pp. 215-224 ◽  
Author(s):  
Đurđica Kovačić ◽  
Davor Kralik ◽  
Slavko Rupčić ◽  
Daria Jovičić ◽  
Robert Spajić ◽  
...  

2012 ◽  
Vol 15 (23) ◽  
pp. 1111-1118 ◽  
Author(s):  
Ajay Kumar Jha ◽  
Jianzheng Li ◽  
Qiaoying Ban ◽  
Liguo Zhang ◽  
Bowei Zhao

2011 ◽  
Vol 64 (1) ◽  
pp. 70-76 ◽  
Author(s):  
D. Cysneiros ◽  
A. Thuillier ◽  
R. Villemont ◽  
A. Littlestone ◽  
T. Mahony ◽  
...  

Continuous Stirred Tank Reactors (CSTRs), operated in batch mode, were used to evaluate the feasibility of psychrophilic (low temperature) digestion of perennial rye grass in a long term experiment (150 days) for the first time. The reactors were operated in parallel at 3 different temperatures, 10, 15 and 37 °C. Hydrolysis, acidification and methanogenesis were assessed by VS degradation, by soluble chemical oxygen demand (SCOD) and volatile fatty acids (VFA) production, and by methane production, respectively. Hydrolysis was the rate-limiting step at all temperatures and the rates and extent of hydrolysis were considerably lower at 15 and 10 °C, than at 37 °C. The total VS degradation was 53%, 34% and 19% at 37, 15 and 10 °C, respectively. Acidification was not affected by temperature and VFA production and consumption was balanced in all cases, except at 10 °C. Methane yields were 0.215 m3 CH4 kg−1 VS−1 added, 0.160 m3 CH4 kg−1 VS−1 added and 0.125 m3 CH4 kg−1 VS−1 added at 37, 15 and 10 °C, respectively. Methanogenesis was not strongly affected at 15 °C but it became rate-limiting at 10 °C. Overall, the solid degradation and methane production performance under psychrophilic conditions was encouraging and greater than previously reported. Considering the non-acclimated, mesophilic nature of the inoculum, there are grounds to believe that low-temperature anaerobic digestion of grass could be feasible if coupled to efficient hydrolysis of the biomass.


Sign in / Sign up

Export Citation Format

Share Document