Using unmanned aerial vehicle to investigate the vertical distribution of fine particulate matter

2019 ◽  
Vol 17 (1) ◽  
pp. 219-230 ◽  
Author(s):  
D. Wang ◽  
Z. Wang ◽  
Z.-R. Peng ◽  
D. Wang
Author(s):  
J. B. Babaan ◽  
J. P. Ballori ◽  
A. M. Tamondong ◽  
R. V. Ramos ◽  
P. M. Ostrea

<p><strong>Abstract.</strong> As the unmanned aerial vehicle (UAV) technology has gained popularity over the years, it has been introduced for air quality monitoring. This study demonstrates the feasibility of customized UAV with mobile monitoring devices as an effective, flexible, and alternative means to collect three-dimensional air pollutant concentration data. This also shows the vertical distribution of PM concentration and the relationship between the PM<sub>2.5</sub> vertical distribution and the meteorological parameters within 500<span class="thinspace"></span>m altitude on a single flight in UP Diliman, Quezon City. Measurement and mapping of the vertical distribution of particulate matter (PM)<sub>2.5</sub> concentration is demonstrated in this research using integrated air quality sensors and customized Unmanned Aerial Vehicle. The flight covers an area with a radius of 80 meters, following a cylindrical path with 40-meter interval vertically. The PM<sub>2.5</sub> concentration values are analyzed relative to the meteorological parameters including air speed, pressure, temperature, and relative humidity up to a 500<span class="thinspace"></span>meter-flying height in a single flight in Barangay UP Campus, UP Diliman, Quezon City. The study shows that generally, the PM<sub>2.5</sub> concentration decreases as the height increases with an exception in the 200&amp;ndash;280<span class="thinspace"></span>m above ground height interval due to a sudden change of atmospheric conditions at the time of the flight. Using correlation and regression analysis, the statistics shows that PM<sub>2.5</sub> concentration has a positive relationship with temperature and a negative relationship with relative humidity and wind speed. As relative humidity and wind speed increases, PM<sub>2.5</sub> decreases, while as temperature increases, PM<sub>2.5</sub> also increases.</p>


2020 ◽  
Author(s):  
Yazhen Gong ◽  
Shanjun Li ◽  
Nicholas Sanders ◽  
Guang Shi

2021 ◽  
pp. 106386
Author(s):  
Heyu Yin ◽  
Sina Parsnejad ◽  
Ehsan Ashoori ◽  
Hao Wan ◽  
Wen Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document