Efficient secretory expression of gene encoding a broad pH-stable maltose-forming amylase from Lactobacillus plantarum S21 in food-grade lactobacilli host

2015 ◽  
Vol 58 (6) ◽  
pp. 901-908 ◽  
Author(s):  
Apinun Kanpiengjai ◽  
Saisamorn Lumyong ◽  
Pairote Wongputtisin ◽  
Dietmar Haltrich ◽  
Thu-Ha Nguyen ◽  
...  
PLoS ONE ◽  
2020 ◽  
Vol 15 (8) ◽  
pp. e0232806
Author(s):  
Mian Chee Gor ◽  
Aida Golneshin ◽  
Thi Thu Hao Van ◽  
Robert J. Moore ◽  
Andrew T. Smith

2013 ◽  
Vol 79 (17) ◽  
pp. 5130-5136 ◽  
Author(s):  
María Esteban-Torres ◽  
Inés Reverón ◽  
José Miguel Mancheño ◽  
Blanca de las Rivas ◽  
Rosario Muñoz

ABSTRACTLactobacillus plantarumis frequently found in the fermentation of plant-derived food products, where hydroxycinnamoyl esters are abundant.L. plantarumWCFS1 cultures were unable to hydrolyze hydroxycinnamoyl esters; however, cell extracts from the strain partially hydrolyze methyl ferulate and methylp-coumarate. In order to discover whether the protein Lp_0796 is the enzyme responsible for this hydrolytic activity, it was recombinantly overproduced and enzymatically characterized. Lp_0796 is an esterase that, among other substrates, is able to efficiently hydrolyze the four model substrates for feruloyl esterases (methyl ferulate, methyl caffeate, methylp-coumarate, and methyl sinapinate). A screening test for the detection of the gene encoding feruloyl esterase Lp_0796 revealed that it is generally present amongL. plantarumstrains. The present study constitutes the description of feruloyl esterase activity inL. plantarumand provides new insights into the metabolism of hydroxycinnamic compounds in this bacterial species.


2011 ◽  
Vol 21 (2) ◽  
pp. 59-68 ◽  
Author(s):  
Sonya Siragusa ◽  
Cecilia Fontana ◽  
Fabrizio Cappa ◽  
Leonardo Caputo ◽  
Pier Sandro Cocconcelli ◽  
...  

2002 ◽  
Vol 68 (11) ◽  
pp. 5663-5670 ◽  
Author(s):  
Peter A. Bron ◽  
Marcos G. Benchimol ◽  
Jolanda Lambert ◽  
Emmanuelle Palumbo ◽  
Marie Deghorain ◽  
...  

ABSTRACT Both Lactococcus lactis and Lactobacillus plantarum contain a single alr gene, encoding an alanine racemase (EC 5.1.1.1), which catalyzes the interconversion of d-alanine and l-alanine. The alr genes of these lactic acid bacteria were investigated for their application as food-grade selection markers in a heterologous complementation approach. Since isogenic mutants of both species carrying an alr deletion (Δalr) showed auxotrophy for d-alanine, plasmids carrying a heterologous alr were constructed and could be selected, since they complemented d-alanine auxotrophy in the L. plantarum Δalr and L. lactis Δalr strains. Selection was found to be highly stringent, and plasmids were stably maintained over 200 generations of culturing. Moreover, the plasmids carrying the heterologous alr genes could be stably maintained in wild-type strains of L. plantarum and L. lactis by selection for resistance to d-cycloserine, a competitive inhibitor of Alr (600 and 200 μg/ml, respectively). In addition, a plasmid carrying the L. plantarum alr gene under control of the regulated nisA promoter was constructed to demonstrate that d-cycloserine resistance of L. lactis is linearly correlated to the alr expression level. Finally, the L. lactis alr gene controlled by the nisA promoter, together with the nisin-regulatory genes nisRK, were integrated into the chromosome of L. plantarum Δalr. The resulting strain could grow in the absence of d-alanine only when expression of the alr gene was induced with nisin.


2004 ◽  
Vol 70 (1) ◽  
pp. 310-317 ◽  
Author(s):  
Peter A. Bron ◽  
Sally M. Hoffer ◽  
Iris I. Van Swam ◽  
Willem M. De Vos ◽  
Michiel Kleerebezem

ABSTRACT This paper describes the use of the alr gene, encoding alanine racemase, as a promoter-screening tool for the identification of conditional promoters in Lactobacillus plantarum. Random fragments of the L. plantarum WCFS1 genome were cloned upstream of the promoterless alr gene of Lactococcus lactis in a low-copy-number plasmid vector. The resulting plasmid library was introduced into an L. plantarum Δalr strain (MD007), and 40,000 clones were selected. The genome coverage of the library was estimated to be 98%, based on nucleotide insert sequence and restriction analyses of the inserts of randomly selected clones. The library was screened for clones that were capable of complementing the d-alanine auxotroph phenotype of MD007 in media containing up to 10, 100, or 300 μg of the competitive Alr inhibitor d-cycloserine per ml. Western blot analysis with polyclonal antibodies raised against lactococcal Alr revealed that the Alr production level required for growth increased in the presence of increasing concentrations of d-cycloserine, adding a quantitative factor to the primarily qualitative nature of the alr complementation screen. Screening of the alr complementation library for clones that could grow only in the presence of 0.8 M NaCl resulted in the identification of eight clones that upon Western blot analysis showed significantly higher Alr production under high-salt conditions than under low-salt conditions. These results established the effectiveness of the alanine racemase complementation screening method for the identification of promoters on their conditional or constitutive activity.


2015 ◽  
Vol 81 (17) ◽  
pp. 5993-6002 ◽  
Author(s):  
Winschau F. van Zyl ◽  
Shelly M. Deane ◽  
Leon M. T. Dicks

ABSTRACTLactic acid bacteria (LAB) are natural inhabitants of the gastrointestinal tract (GIT) of humans and animals, and some LAB species receive considerable attention due to their health benefits. Although many papers have been published on probiotic LAB, only a few reports have been published on the migration and colonization of the cells in the GIT. This is due mostly to the lack of efficient reporter systems. In this study, we report on the application of the fluorescent mCherry protein in thein vivotagging of the probiotic strainsEnterococcus mundtiiST4SA andLactobacillus plantarum423. ThemCherrygene, encoding a red fluorescent protein (RFP), was integrated into a nonfunctional region on the genome ofL. plantarum423 by homologous recombination. In the case ofE. mundtiiST4SA, themCherrygene was cloned into the pGKV223D LAB/Escherichia coliexpression vector. Expression of themCherrygene did not alter the growth rate of the two strains and had no effect on bacteriocin production. Both strains colonized the cecum and colon of mice.


Sign in / Sign up

Export Citation Format

Share Document