Estimation for the elasticity of vascular endothelial cells on the basis of atomic force microscopy and Young's modulus of gelatin gels

2001 ◽  
Vol 47 (3-4) ◽  
pp. 375-381 ◽  
Author(s):  
H. Sato ◽  
M. Katano ◽  
T. Takigawa ◽  
T. Masuda
2021 ◽  
Vol 22 (2) ◽  
pp. 624
Author(s):  
Juan Carlos Gil-Redondo ◽  
Jagoba Iturri ◽  
Felipe Ortega ◽  
Raquel Pérez-Sen ◽  
Andreas Weber ◽  
...  

Endothelial cells and astrocytes preferentially express metabotropic P2Y nucleotide receptors, which are involved in the maintenance of vascular and neural function. Among these, P2Y1 and P2Y2 receptors appear as main actors, since their stimulation induces intracellular calcium mobilization and activates signaling cascades linked to cytoskeletal reorganization. In the present work, we have analyzed, by means of atomic force microscopy (AFM) in force spectroscopy mode, the mechanical response of human umbilical vein endothelial cells (HUVEC) and astrocytes upon 2MeSADP and UTP stimulation. This approach allows for simultaneous measurement of variations in factors such as Young’s modulus, maximum adhesion force and rupture event formation, which reflect the potential changes in both the stiffness and adhesiveness of the plasma membrane. The largest effect was observed in both endothelial cells and astrocytes after P2Y2 receptor stimulation with UTP. Such exposure to UTP doubled the Young’s modulus and reduced both the adhesion force and the number of rupture events. In astrocytes, 2MeSADP stimulation also had a remarkable effect on AFM parameters. Additional studies performed with the selective P2Y1 and P2Y13 receptor antagonists revealed that the 2MeSADP-induced mechanical changes were mediated by the P2Y13 receptor, although they were negatively modulated by P2Y1 receptor stimulation. Hence, our results demonstrate that AFM can be a very useful tool to evaluate functional native nucleotide receptors in living cells.


2004 ◽  
Vol 34 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Hiroko Sato ◽  
Noriyuki Kataoka ◽  
Fumihiko Kajiya ◽  
Masahiro Katano ◽  
Toshikazu Takigawa ◽  
...  

Soft Matter ◽  
2018 ◽  
Vol 14 (16) ◽  
pp. 3192-3201 ◽  
Author(s):  
Srinivas Mettu ◽  
Qianyu Ye ◽  
Meifang Zhou ◽  
Raymond Dagastine ◽  
Muthupandian Ashokkumar

Atomic Force Microscopy (AFM) is used to measure the stiffness and Young's modulus of individual microcapsules that have a chitosan cross-linked shell encapsulating tetradecane.


Nanoscale ◽  
2018 ◽  
Vol 10 (27) ◽  
pp. 13022-13027 ◽  
Author(s):  
Basant Chitara ◽  
Assaf Ya'akobovitz

The present study highlights the elastic properties of suspended GaS, GaSe and GaTe nanosheets using atomic force microscopy. GaS exhibited the highest Young's modulus (∼173 GPa) among these nanosheets. These materials can withstand maximal stresses of up to 8 GPa and a maximal strain of 7% before breaking, making them suitable for stretchable electronic and optomechanical devices.


Sign in / Sign up

Export Citation Format

Share Document