Optimized Controller Design for a 12-Pulse Voltage Source Converter Based HVDC System

2017 ◽  
Vol 98 (6) ◽  
pp. 567-577
Author(s):  
Ruchi Agarwal ◽  
Sanjeev Singh
Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3097
Author(s):  
Roberto Benato ◽  
Antonio Chiarelli ◽  
Sebastian Dambone Sessa

The purpose of this paper is to highlight that, in order to assess the availability of different HVDC cable transmission systems, a more detailed characterization of the cable management significantly affects the availability estimation since the cable represents one of the most critical elements of such systems. The analyzed case study consists of a multi-terminal direct current system based on both line commutated converter and voltage source converter technologies in different configurations, whose availability is computed for different transmitted power capacities. For these analyses, the matrix-based reliability estimation method is exploited together with the Monte Carlo approach and the Markov state space one. This paper shows how reliability analysis requires a deep knowledge of the real installation conditions. The impact of these conditions on the reliability evaluation and the involved benefits are also presented.


2013 ◽  
Vol 3 (2) ◽  
Author(s):  
Guo-Jie Li ◽  
Si-Ye Ruan ◽  
Tek Lie

AbstractA multi-terminal voltage-source-converter (VSC) based high voltage direct current (HVDC) system is concerned for its flexibility and reliability. In this study, a control strategy for multiple VSCs is proposed to auto-share the real power variation without changing control mode, which is based on “dc voltage droop” power regulation functions. With the proposed power regulation design, the multiple VSCs automatically share the real power change and the VSC-HVDC system is stable even under loss of any one converter while there is no overloading for any individual converter. Simulation results show that it is effective to balance real power for power disturbance and thus improves operation reliability for the multi-terminal VSC-HVDC system by the proposed control strategy.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2260
Author(s):  
Fan Cheng ◽  
Lijun Xie ◽  
Zhibing Wang

This paper investigated the characteristics of a novel type of hybrid high voltage direct current (HVdc) converter, which is composed by line commutated converter series with voltage source converter. The system and valve level control strategies are introduced, which can provide ac system voltage support. A novel filter design scheme composed by resonant filers for hybrid HVdc are also proposed, which can decrease the capacity of reactive power compensation equipment without deteriorate harmonic characteristics. The ac voltage of HVdc fluctuation level caused by transmitted power variation will be effectively reduced, with the coordination between filter design scheme and converter control. In addition, the influence of ac grid strength is also analyzed by equivalent source internal impedance represented by short circuit ratio (SCR). Finally, the +800 kV/1600 MW hybrid HVdc system connecting two ac grids under different SCR cases are studied, and the PSCAD/EMTDC simulation results have validated the effectiveness for proposed strategy.


Author(s):  
Hamed Pourgharibshahi ◽  
Majid Taheri Andani ◽  
Zahra Ramezani ◽  
Kamran Yousefpour ◽  
Tahere Pourseif ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3554
Author(s):  
Naushath M. Haleem ◽  
Athula D. Rajapakse ◽  
Aniruddha M. Gole ◽  
Ioni T. Fernando

A selective fault clearing scheme is proposed for a hybrid voltage source converter (VSC)-line commutated converter (LCC) multi-terminal high voltage direct current (HVdc) transmission structure in which two small capacity VSC stations tap into the main transmission line of a high capacity LCC-HVdc link. The use of dc circuit breakers (dc CBs) on the branches connecting to VSCs at the tapping points is explored to minimize the impact of tapping on the reliability of the main LCC link. This arrangement allows clearing of temporary faults on the main LCC line as usual by force retardation of the LCC rectifier. The faults on the branches connecting to VSC stations can be cleared by blocking insulated gate bipolar transistors (IGBTs) and opening ac circuit breakers (ac CB), without affecting the main line’s performance. A local voltage and current measurement based fault discrimination scheme is developed to identify the faulted sections and pole(s), and trigger appropriate fault recovery functions. This fault discrimination scheme is capable of detecting and discriminating short circuits and high resistances faults in any branch well before 2 ms. For the test grid considered, 6 kA, 2 ms dc CBs can easily facilitate the intended fault clearing functions and maintain the power transfer through healthy pole during single-pole faults.


Sign in / Sign up

Export Citation Format

Share Document