Understanding Physico-chemical Interactions of Dendrimers with Guest Molecules for Efficient Drug and Gene Delivery

Author(s):  
Aishwarya Shetty ◽  
Priyal Chikhaliwala ◽  
Jui Suryawanshi ◽  
Sudeshna Chandra
2019 ◽  
Vol 23 (11) ◽  
pp. 1256-1269 ◽  
Author(s):  
Ramin Karimian ◽  
Milad Aghajani

Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides containing six (α-CD), seven (β-CD), eight (γ-CD) and more glucopyranose units linked with α-(1,4) bonds, having a terminal hydrophilic part and central lipophilic cavity. α-, β- and γ-CDs are widely used in many industrial products, technologies and analytical methods owing to their unique, versatile and tunable characteristics. In the pharmaceutical industry, CDs are used as complexing agents to enhance aqueous solubility, physico-chemical stability and bio-availability of administered drugs. Herein, special attention is given to the use of α-, β- and γ-CDs and their derivatives in different areas of drug and gene delivery systems in the past few decades through various routes of administration with a major emphasis on the more recent developments.


2019 ◽  
Vol 26 (38) ◽  
pp. 6834-6850 ◽  
Author(s):  
Mohammad Omaish Ansari ◽  
Kalamegam Gauthaman ◽  
Abdurahman Essa ◽  
Sidi A. Bencherif ◽  
Adnan Memic

: Nanobiotechnology has huge potential in the field of regenerative medicine. One of the main drivers has been the development of novel nanomaterials. One developing class of materials is graphene and its derivatives recognized for their novel properties present on the nanoscale. In particular, graphene and graphene-based nanomaterials have been shown to have excellent electrical, mechanical, optical and thermal properties. Due to these unique properties coupled with the ability to tune their biocompatibility, these nanomaterials have been propelled for various applications. Most recently, these two-dimensional nanomaterials have been widely recognized for their utility in biomedical research. In this review, a brief overview of the strategies to synthesize graphene and its derivatives are discussed. Next, the biocompatibility profile of these nanomaterials as a precursor to their biomedical application is reviewed. Finally, recent applications of graphene-based nanomaterials in various biomedical fields including tissue engineering, drug and gene delivery, biosensing and bioimaging as well as other biorelated studies are highlighted.


2016 ◽  
Vol 20 (28) ◽  
pp. 2949-2959 ◽  
Author(s):  
Mahdi Karimi ◽  
Seyed Basri ◽  
Manouchehr Vossoughi ◽  
Parvin Pakchin ◽  
Hamed Mirshekari ◽  
...  

Author(s):  
E. Calendi ◽  
A. Di Marco ◽  
M. Reggiani ◽  
B. Scarpinato ◽  
L. Valentini

Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 940
Author(s):  
Chaojie Zhu ◽  
Zhiheng Ji ◽  
Junkai Ma ◽  
Zhijie Ding ◽  
Jie Shen ◽  
...  

Cancer is one of the most devastating and ubiquitous human diseases. Conventional therapies like chemotherapy and radiotherapy are the most widely used cancer treatments. Despite the notable therapeutic improvements that these measures achieve, disappointing therapeutic outcome and cancer reoccurrence commonly following these therapies demonstrate the need for better alternatives. Among them, bacterial therapy has proven to be effective in its intrinsic cancer targeting ability and various therapeutic mechanisms that can be further bolstered by nanotechnology. In this review, we will discuss recent advances of nanotechnology-facilitated bacteria-based drug and gene delivery systems in cancer treatment. Therapeutic mechanisms of these hybrid nanoformulations are highlighted to provide an up-to-date understanding of this emerging field.


Biomaterials ◽  
2016 ◽  
Vol 82 ◽  
pp. 194-207 ◽  
Author(s):  
Xiaofei Liang ◽  
Bizhi Shi ◽  
Kai Wang ◽  
Mingliang Fan ◽  
Dejin Jiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document