Role of Nanoscale Delivery Systems in Tissue Engineering

Author(s):  
Biji Balakrishnan
Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 357
Author(s):  
Shery Jacob ◽  
Anroop B. Nair ◽  
Jigar Shah ◽  
Nagaraja Sreeharsha ◽  
Sumeet Gupta ◽  
...  

The popularity of hydrogels as biomaterials lies in their tunable physical properties, ability to encapsulate small molecules and macromolecular drugs, water holding capacity, flexibility, and controllable degradability. Functionalization strategies to overcome the deficiencies of conventional hydrogels and expand the role of advanced hydrogels such as DNA hydrogels are extensively discussed in this review. Different types of cross-linking techniques, materials utilized, procedures, advantages, and disadvantages covering hydrogels are tabulated. The application of hydrogels, particularly in buccal, oral, vaginal, and transdermal drug delivery systems, are described. The review also focuses on composite hydrogels with enhanced properties that are being developed to meet the diverse demand of wound dressing materials. The unique advantages of hydrogel nanoparticles in targeted and intracellular delivery of various therapeutic agents are explained. Furthermore, different types of hydrogel-based materials utilized for tissue engineering applications and fabrication of contact lens are discussed. The article also provides an overview of selected examples of commercial products launched particularly in the area of oral and ocular drug delivery systems and wound dressing materials. Hydrogels can be prepared with a wide variety of properties, achieving biostable, bioresorbable, and biodegradable polymer matrices, whose mechanical properties and degree of swelling are tailored with a specific application. These unique features give them a promising future in the fields of drug delivery systems and applied biomedicine.


2013 ◽  
Vol 20 (14) ◽  
pp. 1847-1857 ◽  
Author(s):  
Carmelo Puglia ◽  
Giorgia Tirendi ◽  
Francesco Bonina

2020 ◽  
Vol 17 ◽  
Author(s):  
Neeraj Mittal ◽  
Varun Garg ◽  
Sanjay Kumar Bhadada ◽  
O. P. Katare

: The corona virus disease 2019 (COVID-19) has found its roots from Wuhan (China). COVID-19 is caused by a novel corona virus SARS-CoV2, previously named as 2019-nCoV. COVID-19 has spread across the globe and declared as pandemic by World health organization (WHO) on 11th March, 2020. Currently, there is no standard drug or vaccine available for the treatment, so repurposing of existing drugs is the only solution. Novel drug delivery systems (NDDS) will be boon for the repurposing of drugs. The role of various NDDS in repurposing of existing drugs for treatment of various viral diseases and their relevance in COVID-19 has discussed in this paper. It focuses on the currently ongoing research in the implementation of NDDS in COVID-19. Moreover it describes the role of NDDS in vaccine development for COVID-19. This paper also emphasizes how NDDS will help to develop the improved delivery systems (dosage forms) of existing therapeutic agents and also explore the new insights to find out the void spaces for a potential targeted delivery. So in these tough times, NDDS and nanotechnology can be a safeguard to humanity.


2020 ◽  
Vol 17 (10) ◽  
pp. 911-924
Author(s):  
Rohitas Deshmukh

Colon cancer is one of the most prevalent diseases, and traditional chemotherapy has not been proven beneficial in its treatment. It ranks second in terms of mortality due to all cancers for all ages. Lack of selectivity and poor biodistribution are the biggest challenges in developing potential therapeutic agents for the treatment of colon cancer. Nanoparticles hold enormous prospects as an effective drug delivery system. The delivery systems employing the use of polymers, such as chitosan and pectin as carrier molecules, ensure the maximum absorption of the drug, reduce unwanted side effects and also offer protection to the therapeutic agent from quick clearance or degradation, thus allowing an increased amount of the drug to reach the target tissue or cells. In this systematic review of published literature, the author aimed to assess the role of chitosan and pectin as polymer-carriers in colon targeted delivery of drugs in colon cancer therapy. This review summarizes the various studies employing the use of chitosan and pectin in colon targeted drug delivery systems.


2006 ◽  
Vol 1 (3) ◽  
pp. 333-343 ◽  
Author(s):  
Masashi Nomi ◽  
Hideaki Miyake ◽  
Yoshifumi Sugita ◽  
Masato Fujisawa ◽  
Shay Soker

2021 ◽  
Vol 32 (5) ◽  
pp. 1924-1950
Author(s):  
Amir Ghaderpour ◽  
Zohreh Hoseinkhani ◽  
Reza Yarani ◽  
Sina Mohammadiani ◽  
Farshid Amiri ◽  
...  

Author(s):  
Stefano Sivolella ◽  
Marleen De ◽  
Giulia Brunello ◽  
Sara Ricci ◽  
Drazen Tadic ◽  
...  

2021 ◽  
pp. 113870
Author(s):  
Zhejie Chen ◽  
Mohamed A. Farag ◽  
Zhangfeng Zhong ◽  
Chen Zhang ◽  
Yu Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document