scholarly journals Fabrication and performance evaluation of novel transparent ceramics RE:Tb3Ga5O12 (RE = Pr, Tm, Dy) toward magneto-optical application

2021 ◽  
Vol 10 (2) ◽  
pp. 271-278
Author(s):  
Xiaoying Li ◽  
Ilya L. Snetkov ◽  
Aleksey Yakovlev ◽  
Qiang Liu ◽  
Xin Liu ◽  
...  

AbstractTransparent ceramics are at the heart of modern magneto-optical materials providing promising opportunities for Faraday isolators. 1.0 at% RE:Tb3Ga5O12 (rare earth (RE) = Pr, Tm, Dy) transparent ceramics were successfully prepared by air sintering and sequential HIP technique using the coprecipitated powders as the raw material. All the powders have shown to be a pure cubic terbium gallium garnet (TGG) phase and exhibit good dispersion. Additionally, a change could not be observed in particle shape with the different doped ions. After the two-step sintering, all the obtained ceramics have good optical quality, and the in-line transmittances at 1070 nm are higher than 80%. Moreover, no secondary phase can be detected from the microstructures. However, the pores which remain entrapped in the ceramics can be noted. The Verdet constant of ceramic samples is optimized by RE doping, and the Verdet constant at 632.8 nm is about −143 rad·T−1·m−1, which is about 5% higher than that of TGG ceramics. Finally, the thermo-optical properties of 1.0 at% RE:TGG transparent ceramics are compared. The annealed TGG ceramic showed the best thermo-optical properties, and the thermally induced depolarization of 1.0 at% Ce:TGG and 1.0 at% Tm:TGG was inferior to that of annealed TGG ceramic.

Materials ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 300 ◽  
Author(s):  
Zhong Wan ◽  
Yinzhen Wang ◽  
Jian Zhang ◽  
Shiwei Wang ◽  
Dan Han ◽  
...  

(Tb0.6Y0.4)3Al5O12 transparent ceramics were successfully fabricated by solid-state reactive sintering using Tb4O7, Y2O3, and α-Al2O3 powders as raw materials. The effect of (Tb+Y)/Al ratio on microstructure evolution and densification process was investigated in detailed. The results showed that the grain growth kinetics were significantly affected by (Tb+Y)/Al ratio. Al-rich and Tb-rich phases appeared in part of the samples of different ratios. Particularly, excess aluminum increased the diffusing process, leading to a higher densification rate, while samples with excess terbium ratios displayed a smaller grain size and lower relative density. The optical quality was highly related to the amount of the secondary phase produced by different (Tb+Y)/Al ratios. Finally, (Tb0.6Y0.4)3Al5O12 transparent ceramics have been fabricated through pre-sintering in vacuum, followed by hot isostatic sintering (HIP), and the best transmittance of sample with a 4 mm thickness was approximately 78% at 1064 nm.


2019 ◽  
Vol 94 ◽  
pp. 311-315 ◽  
Author(s):  
Deming Hao ◽  
Jie Chen ◽  
Gang Ao ◽  
Yanna Tian ◽  
Yanru Tang ◽  
...  

2021 ◽  
Vol 2015 (1) ◽  
pp. 012124
Author(s):  
R R Reznik ◽  
K P Kotlyar ◽  
V O Gridchin ◽  
I V Ilkiv ◽  
A I Khrebtov ◽  
...  

Abstract We demonstrate growth of AlGaAs NWs with GaAs QDs and InP NWs with InAsP QDs on silicon substrates. Results of GaAs QDs optical properties study have shown that these objects are sources of single photons. In case of InP NWs with InAsP QDs, the results showed that ~ 100% of homogeneously oriented NWs were formed with good optical quality of this system on a Si(111). PL spectrum peak near 1.3 μm indicates that such system is promising for optoelectronic devices.


2012 ◽  
Vol 185 ◽  
pp. 55-59 ◽  
Author(s):  
Xian Peng Qin ◽  
Jian Zhang ◽  
Hao Yang ◽  
De Wei Luo ◽  
Jan Ma ◽  
...  

Highly transparent Er:YAG ceramics with different Er concentration were fabricated by a solid-state reaction and vacuum sintering method. The optical properties, the microstructure and the upconversion luminescence of the Er:YAG ceramics were investigated. For 3 mm thick samples, the in-line transmittances of the as-fabricated Er:YAG ceramics at the wavelength of 1100 nm and 400 nm were about 84% and 82%, respectively, which was very close to the theoretical transmittance of YAG ceramics. The micrograph of the Er:YAG transparent ceramics exhibited a pore-free structure and the average grain size was about 10 μm. The grain boundary of the ceramics was clean and no secondary phase was detected. When pumped by a 980 nm LD, the strong green and red upconversion luminescences in the Er:YAG ceramics were observed. The different upconversion mechanisms depending on Er concentration in the Er:YAG ceramics were also discussed.


1993 ◽  
Vol 329 ◽  
Author(s):  
Vivien D.

AbstractIn this paper the relationships between the crystal structure, chemical composition and electronic structure of laser materials, and their optical properties are discussed. A brief description is given of the different laser activators and of the influence of the matrix on laser characteristics in terms of crystal field strength, symmetry, covalency and phonon frequencies. The last part of the paper lays emphasis on the means to optimize the matrix-activator properties such as control of the oxidation state and site occupancy of the activator and influence of its concentration.


Coral Reefs ◽  
2021 ◽  
Author(s):  
Tomás López-Londoño ◽  
Claudia T. Galindo-Martínez ◽  
Kelly Gómez-Campo ◽  
Luis A. González-Guerrero ◽  
Sofia Roitman ◽  
...  

AbstractDegradation of water optical properties due to anthropogenic disturbances is a common phenomenon in coastal waters globally. Although this condition is associated with multiple drivers that affect corals health in multiple ways, its effect on light availability and photosynthetic energy acquisition has been largely neglected. Here, we describe how declining the water optical quality in a coastal reef exposed to a turbid plume of water originating from a man-made channel compromises the functionality of the keystone coral species Orbicella faveolata. We found highly variable water optical conditions with significant effects on the light quantity and quality available for corals. Low-light phenotypes close to theoretical limits of photoacclimation were found at shallow depths as a result of reduced light penetration. The estimated photosynthetically fixed energy depletion with increasing depth was associated with patterns of colony mortality and vertical habitat compression. A numerical model illustrates the potential effect of the progressive water quality degradation on coral mortality and population decline along the depth gradient. Collectively, our findings suggest that preserving the water properties seeking to maximize light penetration through the water column is essential for maintaining the coral reef structure and associated ecosystem services.


2016 ◽  
Vol 848 ◽  
pp. 726-732 ◽  
Author(s):  
Rong Liu ◽  
Yan Wang ◽  
Jing Zhu ◽  
Zu Ming Hu ◽  
Jun Rong Yu

The effects of Modified NanoSiO2 Agents on the morphology and performance of ultra-high-molecular weight polyethylene (UHMWPE) microporous membranes via thermally induced phase separation were investigated in this work. The NanoSiO2 was surface modified by silane coupling agent KH570 (KH570-NanoSiO2). Differential scanning calorimetry (DSC) and X-Ray Diffraction (XRD) were performed to obtain crystallization of UHMWPE/white oil/ KH570-NanoSiO2 doped system. The morphology and performance of the prepared UHMWPE microporous membranes were characterized with scanning electron microscopy (SEM) and microfiltration experiments. The results showed that the morphology of UHMWPE membrane could be disturbed by KH570-NanoSiO2. Porosity and the rejection of Bovine serum albumin (BSA) of the blend membrane increased with increasing concentration of Modified NanoSiO2, while the water flux slightly decreased.


2020 ◽  
Vol 7 (1) ◽  
pp. 6
Author(s):  
Dianjun Hu ◽  
Xin Liu ◽  
Ziyu Liu ◽  
Xiaoying Li ◽  
Feng Tian ◽  
...  

As a kind of promising material for a Faraday isolator used in the visible and near infrared range, Dy2O3 transparent ceramics were prepared by vacuum sintering from the nano-powders synthesized by the liquid precipitation method using ammonium hydrogen carbonate as precipitant with no sintering aids. The synthesized precursor was calcinated at 950 °C–1150 °C for 4 h in air. The influences of the calcination temperature on the morphologies and phase composition of Dy2O3 powders were characterized. It is found that the Dy2O3 powder calcinated at 1000 °C for 4 h is superior for the fabrication of Dy2O3 ceramics. The Dy2O3 transparent ceramic sample prepared by vacuum sintering at 1850 °C for 10 h, and subsequently with air annealing at 1400 °C for 10 h, from the 1000 °C-calcined Dy2O3 powders, presents the best optical quality. The values of in-line transmittance of the optimal ceramic specimen with the thickness of 1.0 mm are 75.3% at 2000 nm and 67.9% at 633 nm. The Verdet constant of Dy2O3 ceramics was measured to be −325.3 ± 1.9 rad/(T·m) at 633 nm, about 2.4 times larger than that of TGG (Tb3Ga5O12) single crystals.


Sign in / Sign up

Export Citation Format

Share Document