scholarly journals Microstructural characterization of a double pulse resistance spot welded 1200 MPa TBF steel

2019 ◽  
Vol 64 (2) ◽  
pp. 335-343
Author(s):  
Manfred Stadler ◽  
Martin Gruber ◽  
Ronald Schnitzer ◽  
Christina Hofer

AbstractIn the automotive industry resistance, spot welding is the dominant technology in sheet metal joining of advanced high strength steels (AHSS). In order to improve the mechanical performance of AHSS welds, in-process tempering via a second pulse is a possible approach. In this work, two different double pulse welding schemes were applied to a 1200 MPa transformation-induced plasticity (TRIP)-aided bainitic ferrite (TBF) steel. The different microstructures in the welds were characterized via light optical and scanning electron microscopy. Additionally, hardness mappings with several hundred indents were performed. It is shown that the second pulse, following a low first pulse which is high enough to produce a weld nugget that fulfills the quality criterion of a minimum spot weld diameter of 4*√t, leads to partial reaustenitization and consequently to a ferritic/martensitic microstructure after final quenching. Hardness mappings revealed that this inner FZ is harder than the surrounding FZ consisting of tempered martensite. In contrast, if the highest current without splashing is chosen for the first pulse, the same second pulse does not reaustenitize the FZ but only temper the martensite.

2012 ◽  
Vol 706-709 ◽  
pp. 2734-2739 ◽  
Author(s):  
Hana Jirková ◽  
Ludmila Kučerová ◽  
Bohuslav Mašek

The use of the combined influence of retained austenite and bainitic ferrite to improve strength and ductility has been known for many years from the treatment of multiphase steels. Recently, the very fine films of retained austenite along the martensitic laths have also become the centre of attention. This treatment is called the Q-P process (quenching and partitioning). In this experimental program the quenching temperature and the isothermal holding temperature for diffusion carbon distribution for three advanced high strength steels with carbon content of 0.43 % was examined. The alloying strategies have a different content of manganese and silicon, which leads to various martensite start and finish temperatures. The model treatment was carried out using a thermomechanical simulator. Tested regimes resulted in a tensile strength of over 2000MPa with a ductility of above 14 %. The increase of the partitioning temperature influenced the intensity of martensite tempering and caused the decrease of tensile strength by 400MPa down to 1600MPa and at the same time more than 10 % growth of ductility occurred, increasing it to more than 20%.


2021 ◽  
Author(s):  
Muhammad Sohaib Khan

Microstructural characterization and mechanical properties of spot welded dissimilar advanced high strength steels


2014 ◽  
Vol 891-892 ◽  
pp. 1445-1450 ◽  
Author(s):  
Michael Rethmeier

The use of advanced high strength steels (AHSS) in the automotive body-in-white is increasing. Those steels are predominantly joined by resistance spot welding. For the performance of the whole body-in-white, the fatigue behaviour is of high interest, especially as during production, weld imperfections such as cracks and manufacturing-related gaps cannot be avoided. In this study the TRIP steel HCT690 was used as it is a typical advanced high strength steel in automotive production. The investigation into the influence of cracks was split depending on the crack location in the weld area. Surface cracks in the electrode indentation area as well as in the heat affected zone were produced during welding and analyzed. The results showed that surface cracks independent of their position have no effect on the fatigue life. The produced internal imperfections have shown only a marginal impact on the fatigue life. It was ascertained that gaps of 3 mm lead to a significant drop in fatigue life compared to gap free shear tension samples under a load ratio R of 0.1. This fact was attributed to decreased stiffness, higher transverse vibration and higher rotation between the sheets. Furthermore, FE-simulations have shown an increase in local stresses in gapped samples.


Sign in / Sign up

Export Citation Format

Share Document