scholarly journals Pharmacokinetic Profile of a 2-Month Dose Regimen of Aripiprazole Lauroxil: A Phase I Study and a Population Pharmacokinetic Model

CNS Drugs ◽  
2017 ◽  
Vol 31 (7) ◽  
pp. 617-624 ◽  
Author(s):  
Marjie L. Hard ◽  
Richard J. Mills ◽  
Brian M. Sadler ◽  
Angela Y. Wehr ◽  
Peter J. Weiden ◽  
...  

2002 ◽  
Vol 20 (19) ◽  
pp. 4065-4073 ◽  
Author(s):  
Ch. van Kesteren ◽  
R. A.A. Mathôt ◽  
E. Raymond ◽  
J. P. Armand ◽  
Ch. Dittrich ◽  
...  

PURPOSE: N-(3-Chloro-7-indolyl)-1,4-benzenedisulfonamide (E7070) is a novel sulfonamide anticancer agent currently in phase II clinical development for the treatment of solid tumors. Four phase I studies have been finalized, with E7070 administered at four different treatment schedules to identify the maximum-tolerated dose and the dose-limiting toxicities. Pharmacokinetic analyses of all studies revealed E7070 to have nonlinear pharmacokinetics. A population pharmacokinetic model was designed and validated to describe the pharmacokinetics of E7070 at all four treatment schedules and to identify the possible influences of patient characteristics on the pharmacokinetic parameters. PATIENTS AND METHODS: Plasma concentration-time data of all patients (n = 143) were fitted to several pharmacokinetic models using NONMEM. Seventeen covariables were investigated for their relation with individual pharmacokinetic parameters. A bootstrap procedure was performed to check the validity of the model. RESULTS: The data were best described using a three-compartment model with nonlinear distribution to a peripheral compartment and two parallel pathways of elimination from the central compartment: a linear and a saturable pathway. Body-surface area (BSA) was significantly correlated to both the volume of distribution of the central compartment and to the maximal elimination capacity. The fits of 500 bootstrap replicates of the data set demonstrated the robustness of the developed population pharmacokinetic model. CONCLUSION: A population pharmacokinetic model has been designed and validated that accurately describes the data of four phase I studies with E7070. Furthermore, it has been demonstrated that BSA-guided dosing for E7070 is important.



2018 ◽  
Author(s):  
L Darnaud ◽  
F Lamoureux ◽  
C Godet ◽  
S Pontier ◽  
A Debard ◽  
...  

ABSTRACTIsavuconazole is a new antifungal prodrug to treat invasive aspergillosis and mucormycosis, theoretically not requiring drug monitoring. However, we reported 4 clinical cases with toxic concentrations. Based on Desai’s population pharmacokinetic model, we estimated patients’ kinetic profile. Clearance was abnormally low, likely related to CYP3A4/5 polymorphisms. Thus, we recommend to collect blood sample just before the first maintenance dose to estimate pharmacokinetic profile and individualized dose. For patients presenting high concentrations, pharmacogenetics can be done.



2021 ◽  
Vol 12 ◽  
Author(s):  
Xiao Chen ◽  
Dongdong Wang ◽  
Guangfei Wang ◽  
Yidie Huang ◽  
Xin Yu ◽  
...  

Sirolimus is an effective oral treatment for pediatric patients with lymphangioma. The present clinical study in 15 children (0.12–16.39 years of age) examines the effects of underlying factors on sirolimus concentrations through application of a population pharmacokinetic model. Using Monte Carlo simulation, an initial dose regimen for sirolimus in pediatric patients with lymphangioma is presented. It is found that the lower the body weight, the higher the clearance rate and sirolimus clearances are 0.31–0.17 L/h/kg in pediatric patients with lymphangioma whose weights are 5–60 kg, respectively. The doses of sirolimus, 0.07, 0.06, 0.05 mg/kg/day are recommended for weights of 5–10, 10–24.5 and 24.5–60 kg in children with lymphangioma. This study is the first to establish a population pharmacokinetic model for sirolimus and to recommend initial doses in pediatric patients with lymphangioma. Large scale, prospective studies are needed in the future.



2000 ◽  
Vol 18 (12) ◽  
pp. 2459-2467 ◽  
Author(s):  
James M. Gallo ◽  
Paul B. Laub ◽  
Eric K. Rowinsky ◽  
Louise B. Grochow ◽  
Sharyn D. Baker

PURPOSE: To characterize the pharmacokinetics of topotecan in a population model that would identify patient variables or covariates that appreciably impacted on its disposition. PATIENTS AND METHODS: All data were collected from 82 patients entered in four different phase I trials that were previously reported as separate studies from 1992 to 1996. All patients received topotecan as a 30-minute constant-rate infusion on a daily-times-five schedule and were selected for this study because their daily dose did not exceed 2.0 mg/m2. Among the 82 patients were 30 patients classified as having renal insufficiency and 13 patients with hepatic dysfunction. The population pharmacokinetic model was built in sequential manner, starting with a covariate-free model and progressing to a covariate model with the aid of generalized additive modeling. RESULTS: A linear two-compartment model characterized total topotecan plasma concentrations (n = 899). Four primary pharmacokinetic parameters (total clearance, volume of the central compartment, distributional clearance, and volume of the peripheral compartment) were related to various combinations of covariates. The relationship for total clearance (TVCL [L/h] = 32.0 + [0.356(WT − 71) + 0.308(HT − 168.5) − 8.42(SCR − 1.1)] × [1 + 0.671 sex]) was dependent on the patients’ weight (WT), height (HT), serum creatinine (SCR), and sex and had a moderate ability to predict (r2 = 0.64) each patient’s individual clearance value. The addition of covariates to the population model improved the prediction errors, particularly for clearance. Removal of 10 outlying patients from the analysis improved the ability of the model to predict individual clearance values (r2 = 0.77). CONCLUSION: A population pharmacokinetic model for total topotecan has been developed that incorporates measures of body size and renal function to predict total clearance. The model can be used prospectively to obtain a revised and validated model that can then be used to design individualized dosing regimens.



2017 ◽  
Vol 4 (suppl_1) ◽  
pp. S529-S529
Author(s):  
Scott A Van Wart ◽  
Christopher Stevens ◽  
Zoltan Magyarics ◽  
Steven A Luperchio ◽  
Paul G Ambrose


2021 ◽  
Vol 14 (3) ◽  
pp. 272
Author(s):  
Shelby Barnett ◽  
Julie Errington ◽  
Julieann Sludden ◽  
David Jamieson ◽  
Vianney Poinsignon ◽  
...  

Infants and young children represent an important but much understudied childhood cancer patient population. The pharmacokinetics and pharmacogenetics of the widely used anticancer prodrug cyclophosphamide were investigated in children <2 years of age. Concentrations of cyclophosphamide and selected metabolites were determined in patients administered cyclophosphamide at doses ranging from 100–1500 mg/m2 (5–75 mg/kg), with various infusion times as determined by the standard treatment regimen that each patient was receiving. Polymorphisms in genes including CYP2B6 and CYP2C19 were investigated. Data generated for cyclophosphamide were analysed using a previously published population pharmacokinetic model. Cyclophosphamide pharmacokinetics was assessed in 111 samples obtained from 25 patients ranging from 4–23 months of age. The average cyclophosphamide clearance for the patients was 46.6 mL/min/m2 (ranging from 9.4–153 mL/min/m2), with marked inter-patient variability observed (CV 41%). No significant differences in cyclophosphamide clearance or exposure (AUC) were observed between patient groups as separated by age or body weight. However, marked differences in drug clearance and metabolism were noted between the current data in children <2 years of age and recently published results from a comparable study conducted by our group in older children, which reported significantly lower cyclophosphamide clearance values and metabolite exposures using the same population pharmacokinetic model for analysis. Whilst this study demonstrates no significant differences in cyclophosphamide clearance in patients <2 years, it highlights large differences in dosing protocols across tumour types. Furthermore, the study suggests marked differences in cyclophosphamide clearance in children less than two years of age as compared to older patients.



Pharmaceutics ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 54 ◽  
Author(s):  
Amaia Soraluce ◽  
Helena Barrasa ◽  
Eduardo Asín-Prieto ◽  
Jose Ángel Sánchez-Izquierdo ◽  
Javier Maynar ◽  
...  

Antimicrobial treatment in critically ill patients remains challenging. The aim of this study was to develop a population pharmacokinetic model for linezolid in critically ill patients and to evaluate the adequacy of current dosing recommendation (600 mg/12 h). Forty inpatients were included, 23 of whom were subjected to continuous renal replacement therapies (CRRT). Blood and effluent samples were drawn after linezolid administration at defined time points, and linezolid levels were measured. A population pharmacokinetic model was developed, using NONMEM 7.3. The percentage of patients that achieved the pharmacokinetic/pharmacodynamic (PK/PD) targets was calculated (AUC24/MIC > 80 and 100% T>MIC). A two-compartment model best described the pharmacokinetics of linezolid. Elimination was conditioned by the creatinine clearance and by the extra-corporeal clearance if the patient was subjected to CRRT. For most patients, the standard dose of linezolid did not cover infections caused by pathogens with MIC ≥ 2 mg/L. Continuous infusion may be an alternative, especially when renal function is preserved.



Sign in / Sign up

Export Citation Format

Share Document